Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • PaddleHub
  • Issue
  • #268

P
PaddleHub
  • 项目概览

PaddlePaddle / PaddleHub
大约 2 年 前同步成功

通知 285
Star 12117
Fork 2091
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 200
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 4
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
PaddleHub
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 200
    • Issue 200
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 4
    • 合并请求 4
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 12月 19, 2019 by saxon_zh@saxon_zhGuest

实际体验发现,文字稍微长一点,整个情感分析的计算时长成倍增加,不知道是什么原因呢

Created by: kker43

对这句话计算cost time result=senta.sentiment_classify(data=input_dict)

文字长度输入为:我他妈的无语了 耗时在0.05534195899963379 长度增加三倍:我他妈的无语了我他妈的无语了我他妈的无语了 耗时在0.26111793518066406 尝试几次,会有一定波动,但总体耗时还是很长了。但是有疑问在于整句话长度并不长,以bilstm的结构,在128char长度以内,一般来说10ms应该是OK的吧,在128长度以内,耗时变化应该是波动不大的吧

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/PaddleHub#268
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7