Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • PaddleHub
  • Issue
  • #110

P
PaddleHub
  • 项目概览

PaddlePaddle / PaddleHub
大约 2 年 前同步成功

通知 285
Star 12117
Fork 2091
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 200
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 4
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
PaddleHub
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 200
    • Issue 200
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 4
    • 合并请求 4
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 08, 2019 by saxon_zh@saxon_zhGuest

训练和测试使用一批相同的数据,训练误差和测试误差不一致

Created by: Dely-Yu

训练和测试使用一批相同的数据,训练误差0.03左右,但是测试误差3.4左右。

def train_net(args, pad_num=20, num_classes=100): from _8conv_baseline_char_fc_attdecode_small_open.cnn_ctc_model_senet_8conv_pfc_attdecode import encoder_net_attdecode_return_conv_features images = fluid.layers.data(name='img', shape=[1,32,256], dtype='float32') images = fluid.layers.cast(x= images , dtype='float32') mask = fluid.layers.data(name='mask', shape=[20, 16*128], dtype='float32') mask = fluid.layers.cast(x= mask , dtype='float32') #fluid.layers.Print(images,summarize = 10,message="images") conv_features= encoder_net_attdecode_return_conv_features(images,word_vector_dim-1,mask)#fluid.layers.data(name='conv_feature', shape=[20,64], dtype='float32') print("conv_features is ",conv_features) #content = fluid.layers.data(name='word', shape=[1], dtype='int32', lod_level=1)

pos = fluid.layers.data(name="pos", shape=[pad_num, 4],append_batch_size=False, dtype='float32')
pos = fluid.layers.cast(x= pos , dtype='float32')
_tmp_pos = fluid.layers.unsqueeze(pos, axes=[0])
_tmp_pos = fluid.layers.expand(_tmp_pos, expand_times=[pad_num, 1, 1])
_tmp_pos_transp = fluid.layers.transpose(_tmp_pos, perm=[1, 0, 2])
print("_tmp_pos is ",_tmp_pos)
print("_tmp_pos_transp is ",_tmp_pos_transp)
adjacency = _tmp_pos - _tmp_pos_transp #????# fluid.layers.data(name='adja', shape=[pad_num, pad_num, 6], append_batch_size=False, dtype='float32')

node_label = fluid.layers.data(name='node_label', shape=[pad_num, 1], append_batch_size=False, dtype='int32')
node_label = fluid.layers.cast(x=node_label, dtype='int64')

node_mask = fluid.layers.data(name='node_mask', shape=[pad_num, 1], append_batch_size=False, dtype='int32')
node_mask = fluid.layers.cast(x=node_mask, dtype='float32')

edge_label = fluid.layers.data(name='edge_label', shape=[pad_num, pad_num], append_batch_size=False, dtype='int32')
edge_label = fluid.layers.cast(x=edge_label, dtype='float32')

edge_balance = fluid.layers.data(name='edge_mask', shape=[pad_num, pad_num], append_batch_size=False, dtype='float32')
edge_balance = fluid.layers.cast(x=edge_balance, dtype='float32')
tmp = fluid.layers.fill_constant([pad_num, pad_num], value=0.5, dtype='float32')
edge_mask = fluid.layers.less_than(tmp, edge_balance)
edge_mask = fluid.layers.cast(x=edge_mask, dtype='float32')

edge_out, node_out = encoder_net(conv_features, adjacency, node_mask, edge_mask, pad_num, num_classes)
print('edge out is ',edge_out)
print('node_out is ',node_out)
print(" ok  encoder  ")
node_cost = fluid.layers.softmax_with_cross_entropy(node_out, node_label)
node_cost = fluid.layers.reduce_sum(node_cost * node_mask)/fluid.layers.reduce_sum(node_mask)

#edge_cost = fluid.layers.sigmoid_cross_entropy_with_logits(edge_out, edge_label)
edge_cost = focal_loss_sigmod(edge_out, edge_label)
edge_cost = fluid.layers.reduce_sum(edge_cost * edge_balance)
edge_cost *= args.lamb

sum_cost = node_cost + edge_cost

node_index = fluid.layers.argmax(node_out, axis=1)
edge_score = fluid.layers.sigmoid(edge_out)

_**inference_program = fluid.default_main_program().clone(for_test=True)**_
if args.learning_rate_decay == "piecewise_decay":
    learning_rate = fluid.layers.piecewise_decay([args.stepvalue], [args.lr, args.lr * 0.1])
else:
    learning_rate = args.lr

optimizer = fluid.optimizer.Adam(learning_rate=learning_rate)
#optimizer = fluid.optimizer.Momentum(learning_rate=learning_rate, momentum=0.9)
_, params_grads = optimizer.minimize(sum_cost)
model_average = None
if args.average_window > 0:
    model_average = fluid.optimizer.ModelAverage(
        args.average_window,
        min_average_window=args.min_average_window,
        max_average_window=args.max_average_window)
return node_cost, edge_cost, inference_program, model_average, node_index, edge_score,sum_cost
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/PaddleHub#110
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7