Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
f40cdd8e
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 2 年 前同步成功
通知
285
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f40cdd8e
编写于
11月 11, 2020
作者:
H
haoyuying
提交者:
GitHub
11月 11, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adapt resnet50_vd_imagenet_ssld for paddle-2.0.0rc
上级
dd81c4f5
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
24 addition
and
18 deletion
+24
-18
modules/image/classification/resnet50_vd_imagenet_ssld/module.py
.../image/classification/resnet50_vd_imagenet_ssld/module.py
+24
-18
未找到文件。
modules/image/classification/resnet50_vd_imagenet_ssld/module.py
浏览文件 @
f40cdd8e
...
@@ -13,13 +13,16 @@
...
@@ -13,13 +13,16 @@
# limitations under the License.
# limitations under the License.
import
os
import
os
import
math
import
math
from
typing
import
Union
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle
from
paddle
import
ParamAttr
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
import
paddle.nn.functional
as
F
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
import
paddlehub.vision.transforms
as
T
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
,
AvgPool2D
from
paddle.nn.initializer
import
Uniform
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
from
paddlehub.module.cv_module
import
ImageClassifierModule
...
@@ -42,8 +45,8 @@ class ConvBNLayer(nn.Layer):
...
@@ -42,8 +45,8 @@ class ConvBNLayer(nn.Layer):
super
(
ConvBNLayer
,
self
).
__init__
()
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
AvgPool2
d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_pool2d_avg
=
AvgPool2
D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2
d
(
self
.
_conv
=
Conv2
D
(
in_channels
=
num_channels
,
in_channels
=
num_channels
,
out_channels
=
num_filters
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
kernel_size
=
filter_size
,
...
@@ -116,7 +119,8 @@ class BottleneckBlock(nn.Layer):
...
@@ -116,7 +119,8 @@ class BottleneckBlock(nn.Layer):
short
=
inputs
short
=
inputs
else
:
else
:
short
=
self
.
short
(
inputs
)
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
y
=
paddle
.
add
(
x
=
short
,
y
=
conv2
)
y
=
F
.
relu
(
y
)
return
y
return
y
...
@@ -161,7 +165,8 @@ class BasicBlock(nn.Layer):
...
@@ -161,7 +165,8 @@ class BasicBlock(nn.Layer):
short
=
inputs
short
=
inputs
else
:
else
:
short
=
self
.
short
(
inputs
)
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
y
=
paddle
.
add
(
x
=
short
,
y
=
conv1
)
y
=
F
.
relu
(
y
)
return
y
return
y
...
@@ -177,11 +182,12 @@ class BasicBlock(nn.Layer):
...
@@ -177,11 +182,12 @@ class BasicBlock(nn.Layer):
class
ResNet50_vd
(
nn
.
Layer
):
class
ResNet50_vd
(
nn
.
Layer
):
"""ResNet50_vd model."""
"""ResNet50_vd model."""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
def
__init__
(
self
,
label_list
:
list
,
load_checkpoint
:
str
=
None
):
super
(
ResNet50_vd
,
self
).
__init__
()
super
(
ResNet50_vd
,
self
).
__init__
()
self
.
layers
=
50
self
.
layers
=
50
self
.
labels
=
label_list
class_dim
=
len
(
self
.
labels
)
depth
=
[
3
,
4
,
6
,
3
]
depth
=
[
3
,
4
,
6
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
64
,
128
,
256
,
512
]
num_filters
=
[
64
,
128
,
256
,
512
]
...
@@ -189,7 +195,7 @@ class ResNet50_vd(nn.Layer):
...
@@ -189,7 +195,7 @@ class ResNet50_vd(nn.Layer):
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
MaxPool2
d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
pool2d_max
=
MaxPool2
D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
self
.
block_list
=
[]
...
@@ -210,7 +216,7 @@ class ResNet50_vd(nn.Layer):
...
@@ -210,7 +216,7 @@ class ResNet50_vd(nn.Layer):
self
.
block_list
.
append
(
bottleneck_block
)
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2
d
(
1
)
self
.
pool2d_avg
=
AdaptiveAvgPool2
D
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
...
@@ -227,13 +233,13 @@ class ResNet50_vd(nn.Layer):
...
@@ -227,13 +233,13 @@ class ResNet50_vd(nn.Layer):
else
:
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnet50_vd_ssld.pdparams'
)
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnet50_vd_ssld.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
model_dict
=
paddle
.
load
(
checkpoint
)
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnet50_vd_ssld.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
print
(
"load pretrained checkpoint success"
)
def
transforms
(
self
,
images
:
Union
[
str
,
np
.
ndarray
]):
transforms
=
T
.
Compose
([
T
.
Resize
((
224
,
224
)),
T
.
Normalize
()])
return
transforms
(
images
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_1
(
inputs
)
...
@@ -242,7 +248,7 @@ class ResNet50_vd(nn.Layer):
...
@@ -242,7 +248,7 @@ class ResNet50_vd(nn.Layer):
y
=
self
.
pool2d_max
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
feature
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
paddle
.
reshape
(
feature
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
y
=
self
.
out
(
y
)
return
y
return
y
,
feature
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录