未验证 提交 e301f567 编写于 作者: jm_12138's avatar jm_12138 提交者: GitHub

update humanseg_lite (#2181)

上级 3b20f676
# humanseg_lite
|模型名称|humanseg_lite|
| :--- | :---: |
| :--- | :---: |
|类别|图像-图像分割|
|网络|shufflenet|
|数据集|百度自建数据集|
......@@ -13,7 +13,7 @@
## 一、模型基本信息
- ### 应用效果展示
- 样例结果示例:
<p align="center">
<img src="https://user-images.githubusercontent.com/35907364/130913092-312a5f37-842e-4fd0-8db4-5f853fd8419f.jpg" width = "337" height = "505" hspace='10'/> <img src="https://user-images.githubusercontent.com/35907364/130916087-7d537ad9-bbc8-4bce-9382-8eb132b35532.png" width = "337" height = "505" hspace='10'/>
......@@ -37,7 +37,7 @@
- ```shell
$ hub install humanseg_lite
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
......@@ -226,6 +226,9 @@
cv2.imwrite("segment_human_lite.png", rgba)
```
- ### Gradio APP 支持
从 PaddleHub 2.3.1 开始支持使用链接 http://127.0.0.1:8866/gradio/humanseg_lite 在浏览器中访问 humanseg_lite 的 Gradio APP。
## 五、更新历史
......@@ -234,7 +237,7 @@
初始发布
* 1.1.0
新增视频人像分割接口
新增视频流人像分割接口
......@@ -247,6 +250,10 @@
移除 Fluid API
* 1.3.0
添加 Gradio APP 支持
```shell
$ hub install humanseg_lite == 1.2.0
$ hub install humanseg_lite == 1.3.0
```
# humanseg_lite
|Module Name |humanseg_lite|
| :--- | :---: |
| :--- | :---: |
|Category |Image segmentation|
|Network|shufflenet|
|Dataset|Baidu self-built dataset|
......@@ -10,10 +10,10 @@
|Data indicators|-|
|Latest update date|2021-02-26|
## I. Basic Information
## I. Basic Information
- ### Application Effect Display
- Sample results:
<p align="center">
<img src="https://user-images.githubusercontent.com/35907364/130913092-312a5f37-842e-4fd0-8db4-5f853fd8419f.jpg" width = "337" height = "505" hspace='10'/> <img src="https://user-images.githubusercontent.com/35907364/130916087-7d537ad9-bbc8-4bce-9382-8eb132b35532.png" width = "337" height = "505" hspace='10'/>
......@@ -39,7 +39,7 @@
- ```shell
$ hub install humanseg_lite
```
- In case of any problems during installation, please refer to:[Windows_Quickstart](../../../../docs/docs_en/get_start/windows_quickstart.md)
| [Linux_Quickstart](../../../../docs/docs_en/get_start/linux_quickstart.md) | [Mac_Quickstart](../../../../docs/docs_en/get_start/mac_quickstart.md)
......@@ -49,7 +49,7 @@
- ```
hub run humanseg_lite --input_path "/PATH/TO/IMAGE"
```
- If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_en/tutorial/cmd_usage.rst)
......@@ -122,9 +122,9 @@
- **Return**
* res (list\[dict\]): The list of recognition results, where each element is dict and each field is:
* res (list\[dict\]): The list of recognition results, where each element is dict and each field is:
* save\_path (str, optional): Save path of the result.
* data (numpy.ndarray): The result of portrait segmentation.
* data (numpy.ndarray): The result of portrait segmentation.
- ```python
def video_stream_segment(self,
......@@ -230,6 +230,8 @@
cv2.imwrite("segment_human_lite.png", rgba)
```
- ### Gradio APP support
Starting with PaddleHub 2.3.1, the Gradio APP for humanseg_lite is supported to be accessed in the browser using the link http://127.0.0.1:8866/gradio/humanseg_lite.
## V. Release Note
......@@ -238,7 +240,7 @@
First release
- 1.1.0
Added video portrait segmentation interface
Added video stream portrait segmentation interface
......@@ -251,6 +253,10 @@
Remove Fluid API
* 1.3.0
Add Gradio APP support.
```shell
$ hub install humanseg_lite == 1.2.0
$ hub install humanseg_lite == 1.3.0
```
......@@ -12,32 +12,39 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import os
import os.path as osp
import argparse
import cv2
import numpy as np
import paddle
import paddle.jit
import paddle.static
from paddle.inference import Config, create_predictor
from paddlehub.module.module import moduleinfo, runnable, serving
from .processor import postprocess, base64_to_cv2, cv2_to_base64, check_dir
from .data_feed import reader, preprocess_v
from .optimal import postprocess_v, threshold_mask
@moduleinfo(
name="humanseg_lite",
type="CV/semantic_segmentation",
author="paddlepaddle",
author_email="",
summary="humanseg_lite is a semantic segmentation model.",
version="1.2.0")
from paddle.inference import Config
from paddle.inference import create_predictor
from .data_feed import preprocess_v
from .data_feed import reader
from .optimal import postprocess_v
from .optimal import threshold_mask
from .processor import base64_to_cv2
from .processor import check_dir
from .processor import cv2_to_base64
from .processor import postprocess
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
@moduleinfo(name="humanseg_lite",
type="CV/semantic_segmentation",
author="paddlepaddle",
author_email="",
summary="humanseg_lite is a semantic segmentation model.",
version="1.3.0")
class ShufflenetHumanSeg:
def __init__(self):
self.default_pretrained_model_path = os.path.join(self.directory, "humanseg_lite_inference", "model")
self._set_config()
......@@ -46,8 +53,8 @@ class ShufflenetHumanSeg:
"""
predictor config setting
"""
model = self.default_pretrained_model_path+'.pdmodel'
params = self.default_pretrained_model_path+'.pdiparams'
model = self.default_pretrained_model_path + '.pdmodel'
params = self.default_pretrained_model_path + '.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
......@@ -64,7 +71,7 @@ class ShufflenetHumanSeg:
gpu_config = Config(model, params)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
if paddle.get_cudnn_version() == 8004:
gpu_config.delete_pass('conv_elementwise_add_act_fuse_pass')
gpu_config.delete_pass('conv_elementwise_add2_act_fuse_pass')
......@@ -134,13 +141,12 @@ class ShufflenetHumanSeg:
output = np.expand_dims(output[:, 1, :, :], axis=1)
# postprocess one by one
for i in range(len(batch_data)):
out = postprocess(
data_out=output[i],
org_im=batch_data[i]['org_im'],
org_im_shape=batch_data[i]['org_im_shape'],
org_im_path=batch_data[i]['org_im_path'],
output_dir=output_dir,
visualization=visualization)
out = postprocess(data_out=output[i],
org_im=batch_data[i]['org_im'],
org_im_shape=batch_data[i]['org_im_shape'],
org_im_path=batch_data[i]['org_im_path'],
output_dir=output_dir,
visualization=visualization)
res.append(out)
return res
......@@ -327,11 +333,10 @@ class ShufflenetHumanSeg:
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(
description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
......@@ -339,12 +344,11 @@ class ShufflenetHumanSeg:
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.segment(
paths=[args.input_path],
batch_size=args.batch_size,
use_gpu=args.use_gpu,
output_dir=args.output_dir,
visualization=args.visualization)
results = self.segment(paths=[args.input_path],
batch_size=args.batch_size,
use_gpu=args.use_gpu,
output_dir=args.output_dir,
visualization=args.visualization)
if args.save_dir is not None:
check_dir(args.save_dir)
self.save_inference_model(args.save_dir)
......@@ -355,14 +359,22 @@ class ShufflenetHumanSeg:
"""
Add the command config options.
"""
self.arg_config_group.add_argument(
'--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU or not")
self.arg_config_group.add_argument(
'--output_dir', type=str, default='humanseg_lite_output', help="The directory to save output images.")
self.arg_config_group.add_argument(
'--save_dir', type=str, default='humanseg_lite_model', help="The directory to save model.")
self.arg_config_group.add_argument(
'--visualization', type=ast.literal_eval, default=False, help="whether to save output as images.")
self.arg_config_group.add_argument('--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not")
self.arg_config_group.add_argument('--output_dir',
type=str,
default='humanseg_lite_output',
help="The directory to save output images.")
self.arg_config_group.add_argument('--save_dir',
type=str,
default='humanseg_lite_model',
help="The directory to save model.")
self.arg_config_group.add_argument('--visualization',
type=ast.literal_eval,
default=False,
help="whether to save output as images.")
self.arg_config_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.")
def add_module_input_arg(self):
......@@ -371,33 +383,20 @@ class ShufflenetHumanSeg:
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")
if __name__ == "__main__":
m = ShufflenetHumanSeg()
#shuffle.video_segment()
img = cv2.imread('photo.jpg')
# res = m.segment(images=[img], visualization=True)
# print(res[0]['data'])
# m.video_segment('')
cap_video = cv2.VideoCapture('video_test.mp4')
fps = cap_video.get(cv2.CAP_PROP_FPS)
save_path = 'result_frame.avi'
width = int(cap_video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap_out = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (width, height))
prev_gray = None
prev_cfd = None
while cap_video.isOpened():
ret, frame_org = cap_video.read()
if ret:
[img_matting, prev_gray, prev_cfd] = m.video_stream_segment(
frame_org=frame_org, frame_id=cap_video.get(1), prev_gray=prev_gray, prev_cfd=prev_cfd)
img_matting = np.repeat(img_matting[:, :, np.newaxis], 3, axis=2)
bg_im = np.ones_like(img_matting) * 255
comb = (img_matting * frame_org + (1 - img_matting) * bg_im).astype(np.uint8)
cap_out.write(comb)
else:
break
cap_video.release()
cap_out.release()
def create_gradio_app(self):
import gradio as gr
import tempfile
import os
from PIL import Image
def inference(image, use_gpu=False):
with tempfile.TemporaryDirectory() as temp_dir:
self.segment(paths=[image], use_gpu=use_gpu, visualization=True, output_dir=temp_dir)
return Image.open(os.path.join(temp_dir, os.listdir(temp_dir)[0]))
interface = gr.Interface(
inference,
[gr.inputs.Image(type="filepath"), gr.Checkbox(label='use_gpu')],
gr.outputs.Image(type="ndarray"),
title='humanseg_lite')
return interface
......@@ -32,8 +32,8 @@ def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
# 超出边界不跟踪
not_track = (cur_x < 0) + (cur_x >= w) + (cur_y < 0) + (cur_y >= h)
flow_bw[~not_track] = flow_bw[cur_y[~not_track], cur_x[~not_track]]
not_track += (
np.square(flow_fw[:, :, 0] + flow_bw[:, :, 0]) + np.square(flow_fw[:, :, 1] + flow_bw[:, :, 1])) >= check_thres
not_track += (np.square(flow_fw[:, :, 0] + flow_bw[:, :, 0]) +
np.square(flow_fw[:, :, 1] + flow_bw[:, :, 1])) >= check_thres
track_cfd[cur_y[~not_track], cur_x[~not_track]] = prev_cfd[~not_track]
is_track[cur_y[~not_track], cur_x[~not_track]] = 1
......
# -*- coding:utf-8 -*-
import base64
import os
import time
import base64
import cv2
import numpy as np
......
......@@ -3,15 +3,16 @@ import shutil
import unittest
import cv2
import requests
import numpy as np
import paddlehub as hub
import requests
import paddlehub as hub
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
class TestHubModule(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
img_url = 'https://unsplash.com/photos/pg_WCHWSdT8/download?ixid=MnwxMjA3fDB8MXxhbGx8fHx8fHx8fHwxNjYyNDM2ODI4&force=true&w=640'
......@@ -23,8 +24,7 @@ class TestHubModule(unittest.TestCase):
f.write(response.content)
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
img = cv2.imread('tests/test.jpg')
video = cv2.VideoWriter('tests/test.avi', fourcc,
20.0, tuple(img.shape[:2]))
video = cv2.VideoWriter('tests/test.avi', fourcc, 20.0, tuple(img.shape[:2]))
for i in range(40):
video.write(img)
video.release()
......@@ -38,101 +38,65 @@ class TestHubModule(unittest.TestCase):
shutil.rmtree('humanseg_lite_video_result')
def test_segment1(self):
results = self.module.segment(
paths=['tests/test.jpg'],
use_gpu=False,
visualization=False
)
results = self.module.segment(paths=['tests/test.jpg'], use_gpu=False, visualization=False)
self.assertIsInstance(results[0]['data'], np.ndarray)
def test_segment2(self):
results = self.module.segment(
images=[cv2.imread('tests/test.jpg')],
use_gpu=False,
visualization=False
)
results = self.module.segment(images=[cv2.imread('tests/test.jpg')], use_gpu=False, visualization=False)
self.assertIsInstance(results[0]['data'], np.ndarray)
def test_segment3(self):
results = self.module.segment(
images=[cv2.imread('tests/test.jpg')],
use_gpu=False,
visualization=True
)
results = self.module.segment(images=[cv2.imread('tests/test.jpg')], use_gpu=False, visualization=True)
self.assertIsInstance(results[0]['data'], np.ndarray)
def test_segment4(self):
results = self.module.segment(
images=[cv2.imread('tests/test.jpg')],
use_gpu=True,
visualization=False
)
results = self.module.segment(images=[cv2.imread('tests/test.jpg')], use_gpu=True, visualization=False)
self.assertIsInstance(results[0]['data'], np.ndarray)
def test_segment5(self):
self.assertRaises(
AssertionError,
self.module.segment,
paths=['no.jpg']
)
self.assertRaises(AssertionError, self.module.segment, paths=['no.jpg'])
def test_segment6(self):
self.assertRaises(
AttributeError,
self.module.segment,
images=['test.jpg']
)
self.assertRaises(AttributeError, self.module.segment, images=['test.jpg'])
def test_video_stream_segment1(self):
img_matting, cur_gray, optflow_map = self.module.video_stream_segment(
frame_org=cv2.imread('tests/test.jpg'),
frame_id=1,
prev_gray=None,
prev_cfd=None,
use_gpu=False
)
img_matting, cur_gray, optflow_map = self.module.video_stream_segment(frame_org=cv2.imread('tests/test.jpg'),
frame_id=1,
prev_gray=None,
prev_cfd=None,
use_gpu=False)
self.assertIsInstance(img_matting, np.ndarray)
self.assertIsInstance(cur_gray, np.ndarray)
self.assertIsInstance(optflow_map, np.ndarray)
img_matting, cur_gray, optflow_map = self.module.video_stream_segment(
frame_org=cv2.imread('tests/test.jpg'),
frame_id=2,
prev_gray=cur_gray,
prev_cfd=optflow_map,
use_gpu=False
)
img_matting, cur_gray, optflow_map = self.module.video_stream_segment(frame_org=cv2.imread('tests/test.jpg'),
frame_id=2,
prev_gray=cur_gray,
prev_cfd=optflow_map,
use_gpu=False)
self.assertIsInstance(img_matting, np.ndarray)
self.assertIsInstance(cur_gray, np.ndarray)
self.assertIsInstance(optflow_map, np.ndarray)
def test_video_stream_segment2(self):
img_matting, cur_gray, optflow_map = self.module.video_stream_segment(
frame_org=cv2.imread('tests/test.jpg'),
frame_id=1,
prev_gray=None,
prev_cfd=None,
use_gpu=True
)
img_matting, cur_gray, optflow_map = self.module.video_stream_segment(frame_org=cv2.imread('tests/test.jpg'),
frame_id=1,
prev_gray=None,
prev_cfd=None,
use_gpu=True)
self.assertIsInstance(img_matting, np.ndarray)
self.assertIsInstance(cur_gray, np.ndarray)
self.assertIsInstance(optflow_map, np.ndarray)
img_matting, cur_gray, optflow_map = self.module.video_stream_segment(
frame_org=cv2.imread('tests/test.jpg'),
frame_id=2,
prev_gray=cur_gray,
prev_cfd=optflow_map,
use_gpu=True
)
img_matting, cur_gray, optflow_map = self.module.video_stream_segment(frame_org=cv2.imread('tests/test.jpg'),
frame_id=2,
prev_gray=cur_gray,
prev_cfd=optflow_map,
use_gpu=True)
self.assertIsInstance(img_matting, np.ndarray)
self.assertIsInstance(cur_gray, np.ndarray)
self.assertIsInstance(optflow_map, np.ndarray)
def test_video_segment1(self):
self.module.video_segment(
video_path="tests/test.avi",
use_gpu=False,
save_dir='humanseg_lite_video_result'
)
self.module.video_segment(video_path="tests/test.avi", use_gpu=False, save_dir='humanseg_lite_video_result')
def test_save_inference_model(self):
self.module.save_inference_model('./inference/model')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册