提交 e1cd9d3d 编写于 作者: W wuzewu

Update detection demo

上级 cfd87707
......@@ -15,27 +15,26 @@ parser.add_argument("--use_gpu", type=ast.literal_eval, default=True
parser.add_argument("--checkpoint_dir", type=str, default="faster_rcnn_finetune_ckpt", help="Path to save log data.")
parser.add_argument("--batch_size", type=int, default=8, help="Total examples' number in batch for training.")
parser.add_argument("--module", type=str, default="faster_rcnn_resnet50_coco2017", help="Module used as feature extractor.")
parser.add_argument("--dataset", type=str, default="coco_10", help="Dataset to finetune.")
# yapf: enable.
def predict(args):
module = hub.Module(name=args.module)
dataset = hub.dataset.Coco10('rcnn')
dataset = hub.dataset.Balloon('rcnn')
print("dataset.num_labels:", dataset.num_labels)
# define batch reader
data_reader = ObjectDetectionReader(dataset=dataset, model_type='rcnn')
pred_input_dict, pred_output_dict, pred_program = module.context(
trainable=False, phase='predict')
trainable=False, phase='predict', num_classes=dataset.num_labels)
pred_feed_list = [
pred_input_dict['image'].name, pred_input_dict['im_info'].name,
pred_input_dict['im_shape'].name
]
pred_feature = [pred_output_dict['head_feat'], pred_output_dict['rois']]
pred_feature = [pred_output_dict['head_features'], pred_output_dict['rois']]
config = hub.RunConfig(
use_data_parallel=False,
......@@ -54,8 +53,8 @@ def predict(args):
config=config)
data = [
"./test/test_img_bird.jpg",
"./test/test_img_cat.jpg",
"./test/balloon1.jpg",
"./test/balloon2.jpg",
]
label_map = dataset.label_dict()
results = task.predict(data=data, return_result=True, accelerate_mode=False)
......
......@@ -15,13 +15,12 @@ parser.add_argument("--use_gpu", type=ast.literal_eval, default=True
parser.add_argument("--checkpoint_dir", type=str, default="ssd_finetune_ckpt", help="Path to save log data.")
parser.add_argument("--batch_size", type=int, default=8, help="Total examples' number in batch for training.")
parser.add_argument("--module", type=str, default="ssd_vgg16_512_coco2017", help="Module used as feature extractor.")
parser.add_argument("--dataset", type=str, default="coco_10", help="Dataset to finetune.")
# yapf: enable.
def predict(args):
module = hub.Module(name=args.module)
dataset = hub.dataset.Coco10('ssd')
dataset = hub.dataset.Balloon('ssd')
print("dataset.num_labels:", dataset.num_labels)
......@@ -50,8 +49,8 @@ def predict(args):
config=config)
data = [
"./test/test_img_bird.jpg",
"./test/test_img_cat.jpg",
"./test/balloon1.jpg",
"./test/balloon2.jpg",
]
label_map = dataset.label_dict()
results = task.predict(data=data, return_result=True, accelerate_mode=False)
......
......@@ -15,13 +15,12 @@ parser.add_argument("--use_gpu", type=ast.literal_eval, default=True
parser.add_argument("--checkpoint_dir", type=str, default="yolo_finetune_ckpt", help="Path to save log data.")
parser.add_argument("--batch_size", type=int, default=8, help="Total examples' number in batch for training.")
parser.add_argument("--module", type=str, default="yolov3_darknet53_coco2017", help="Module used as feature extractor.")
parser.add_argument("--dataset", type=str, default="coco_10", help="Dataset to finetune.")
# yapf: enable.
def predict(args):
module = hub.Module(name=args.module)
dataset = hub.dataset.Coco10('yolo')
dataset = hub.dataset.Balloon('yolo')
print("dataset.num_labels:", dataset.num_labels)
......@@ -49,8 +48,8 @@ def predict(args):
config=config)
data = [
"./test/test_img_bird.jpg",
"./test/test_img_cat.jpg",
"./test/balloon1.jpg",
"./test/balloon2.jpg",
]
label_map = dataset.label_dict()
results = task.predict(data=data, return_result=True, accelerate_mode=False)
......
......@@ -16,23 +16,23 @@ parser.add_argument("--use_gpu", type=ast.literal_eval, default=True
parser.add_argument("--checkpoint_dir", type=str, default="faster_rcnn_finetune_ckpt", help="Path to save log data.")
parser.add_argument("--batch_size", type=int, default=1, help="Total examples' number in batch for training.")
parser.add_argument("--module", type=str, default="faster_rcnn_resnet50_coco2017", help="Module used as feature extractor.")
parser.add_argument("--dataset", type=str, default="coco_10", help="Dataset to finetune.")
parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.")
# yapf: enable.
def finetune(args):
module = hub.Module(name=args.module)
dataset = hub.dataset.Coco10('rcnn')
dataset = hub.dataset.Balloon('rcnn')
print("dataset.num_labels:", dataset.num_labels)
# define batch reader
data_reader = ObjectDetectionReader(dataset=dataset, model_type='rcnn')
input_dict, output_dict, program = module.context(trainable=True)
input_dict, output_dict, program = module.context(
trainable=True, num_classes=dataset.num_labels)
pred_input_dict, pred_output_dict, pred_program = module.context(
trainable=False, phase='predict')
trainable=False, phase='predict', num_classes=dataset.num_labels)
feed_list = [
input_dict["image"].name, input_dict["im_info"].name,
......@@ -54,7 +54,7 @@ def finetune(args):
config = hub.RunConfig(
log_interval=10,
eval_interval=100,
eval_interval=10,
use_data_parallel=args.use_data_parallel,
use_pyreader=True,
use_cuda=args.use_gpu,
......
......@@ -16,14 +16,13 @@ parser.add_argument("--use_gpu", type=ast.literal_eval, default=True
parser.add_argument("--checkpoint_dir", type=str, default="ssd_finetune_ckpt", help="Path to save log data.")
parser.add_argument("--batch_size", type=int, default=8, help="Total examples' number in batch for training.")
parser.add_argument("--module", type=str, default="ssd_vgg16_512_coco2017", help="Module used as feature extractor.")
parser.add_argument("--dataset", type=str, default="coco_10", help="Dataset to finetune.")
parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.")
# yapf: enable.
def finetune(args):
module = hub.Module(name=args.module)
dataset = hub.dataset.Coco10('ssd')
dataset = hub.dataset.Balloon('ssd')
print("dataset.num_labels:", dataset.num_labels)
......
......@@ -16,14 +16,13 @@ parser.add_argument("--use_gpu", type=ast.literal_eval, default=True
parser.add_argument("--checkpoint_dir", type=str, default="yolo_finetune_ckpt", help="Path to save log data.")
parser.add_argument("--batch_size", type=int, default=8, help="Total examples' number in batch for training.")
parser.add_argument("--module", type=str, default="yolov3_darknet53_coco2017", help="Module used as feature extractor.")
parser.add_argument("--dataset", type=str, default="coco_10", help="Dataset to finetune.")
parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.")
# yapf: enable.
def finetune(args):
module = hub.Module(name=args.module)
dataset = hub.dataset.Coco10('yolo')
dataset = hub.dataset.Balloon('yolo')
print("dataset.num_labels:", dataset.num_labels)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册