提交 d5bc65a5 编写于 作者: S Steffy-zxf

Merge branch 'release/v1.7' of https://github.com/PaddlePaddle/PaddleHub into release/v1.7

...@@ -50,7 +50,8 @@ PaddleHub以预训练模型应用为核心具备以下特点: ...@@ -50,7 +50,8 @@ PaddleHub以预训练模型应用为核心具备以下特点:
### 安装命令 ### 安装命令
PaddlePaddle框架的安装请查阅[飞桨快速安装](https://www.paddlepaddle.org.cn/install/quick) 在安装paddlehub之前,请先安装PaddlePaddle深度学习框架。
PaddlePaddle深度学习框架的安装请查阅[飞桨快速安装](https://www.paddlepaddle.org.cn/install/quick)
```shell ```shell
pip install paddlehub pip install paddlehub
......
# DELTA: DEep Learning Transfer using Feature Map with Attention for Convolutional Networks
# Introduction ## Introduction
This page implements the [DELTA](https://arxiv.org/abs/1901.09229) algorithm in [PaddlePaddle](https://www.paddlepaddle.org.cn/install/quick).
This page implements the [DELTA](https://arxiv.org/abs/1901.09229) algorithm in [PaddlePaddle](https://www.paddlepaddle.org.cn).
> Li, Xingjian, et al. "DELTA: Deep learning transfer using feature map with attention for convolutional networks." ICLR 2019. > Li, Xingjian, et al. "DELTA: Deep learning transfer using feature map with attention for convolutional networks." ICLR 2019.
# Preparation of Data and Pre-trained Model ## Preparation of Data and Pre-trained Model
- Download transfer learning target datasets, like [Caltech-256](http://www.vision.caltech.edu/Image_Datasets/Caltech256/), [CUB_200_2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) or others. Arrange the dataset in this way: - Download transfer learning target datasets, like [Caltech-256](http://www.vision.caltech.edu/Image_Datasets/Caltech256/), [CUB_200_2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) or others. Arrange the dataset in this way:
``` ```
...@@ -23,7 +25,7 @@ This page implements the [DELTA](https://arxiv.org/abs/1901.09229) algorithm in ...@@ -23,7 +25,7 @@ This page implements the [DELTA](https://arxiv.org/abs/1901.09229) algorithm in
- Download [the pretrained models](https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification#resnet-series). We give the results of ResNet-101 below. - Download [the pretrained models](https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification#resnet-series). We give the results of ResNet-101 below.
# Running Scripts ## Running Scripts
Modify `global_data_path` in `datasets/data_path` to the path root where the dataset is. Modify `global_data_path` in `datasets/data_path` to the path root where the dataset is.
......
...@@ -832,7 +832,9 @@ class BaseTask(object): ...@@ -832,7 +832,9 @@ class BaseTask(object):
self.config.checkpoint_dir, self.config.checkpoint_dir,
self.exe, self.exe,
main_program=self.main_program) main_program=self.main_program)
# Revise max_train_steps when incremental training
self.max_train_steps = self.env.current_step + self.max_train_steps / self.config.num_epoch * (
self.config.num_epoch - self.env.current_epoch + 1)
return is_load_successful return is_load_successful
def load_parameters(self, dirname): def load_parameters(self, dirname):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册