hub run se_resnet18_vd_imagenet --input_path "/PATH/TO/IMAGE"
```
|模型名称|se_resnet18_vd_imagenet|
| :--- | :---: |
|类别|图像-图像分类|
|网络|SE-ResNet|
|数据集|ImageNet-2012|
|是否支持Fine-tuning|否|
|模型大小|48MB|
|最新更新日期|-|
|数据指标|-|
## API
```python
defget_expected_image_width()
```
## 一、模型基本信息
返回预处理的图片宽度,也就是224。
```python
defget_expected_image_height()
```
返回预处理的图片高度,也就是224。
- ### 模型介绍
```python
defget_pretrained_images_mean()
```
- Squeeze-and-Excitation Networks是由Momenta在2017年提出的一种图像分类结构。该结构通过对特征通道间的相关性进行建模,把重要的特征进行强化来提升准确率。SE_ResNet基于ResNet模型添加了SE Block。该PaddleHub Module结构为SE_ResNet18,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- Res2Net is an improvement on ResNet, which can improve performance without increasing computation. This module is based on Res2Net, trained on ImageNet-2012, and can predict an image of size 224*224*3.
## II.Installation
- ### 1、Environmental Dependence
- paddlepaddle >= 1.6.2
- paddlehub >= 1.6.0 | [How to install PaddleHub](../../../../docs/docs_en/get_start/installation.rst)
- ### 2、Installation
-```shell
$ hub install se_resnet18_vd_imagenet
```
- In case of any problems during installation, please refer to: [Windows_Quickstart](../../../../docs/docs_en/get_start/windows_quickstart.md) | [Linux_Quickstart](../../../../docs/docs_en/get_start/linux_quickstart.md) | [Mac_Quickstart](../../../../docs/docs_en/get_start/mac_quickstart.md)
## III.Module API Prediction
- ### 1、Command line Prediction
-```shell
$ hub run se_resnet18_vd_imagenet --input_path "/PATH/TO/IMAGE"
```
- If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst)