提交 cc708c5e 编写于 作者: Z zhangxuefei

Add the file predict.py to the demo sequence-labeling

上级 1023c320
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on sequence labeling task """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import numpy as np
import os
import time
import paddle
import paddle.fluid as fluid
import paddlehub as hub
from paddlehub.finetune.evaluate import chunk_eval, calculate_f1
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for finetuning, input should be True or False")
args = parser.parse_args()
# yapf: enable.
if __name__ == '__main__':
# loading Paddlehub ERNIE pretrained model
module = hub.Module(name="ernie")
input_dict, output_dict, program = module.context(
max_seq_len=args.max_seq_len)
# Sentence labeling dataset reader
dataset = hub.dataset.MSRA_NER()
reader = hub.reader.SequenceLabelReader(
dataset=dataset,
vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len)
inv_label_map = {val: key for key, val in reader.label_map.items()}
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
with fluid.program_guard(program):
label = fluid.layers.data(
name="label", shape=[args.max_seq_len, 1], dtype='int64')
seq_len = fluid.layers.data(name="seq_len", shape=[1], dtype='int64')
# Use "sequence_outputs" for token-level output.
sequence_output = output_dict["sequence_output"]
# Setup feed list for data feeder
# Must feed all the tensor of ERNIE's module need
# Compared to classification task, we need add seq_len tensor to feedlist
feed_list = [
input_dict["input_ids"].name, input_dict["position_ids"].name,
input_dict["segment_ids"].name, input_dict["input_mask"].name,
label.name, seq_len
]
# Define a classfication finetune task by PaddleHub's API
seq_label_task = hub.create_seq_label_task(
feature=sequence_output,
labels=label,
num_classes=dataset.num_labels,
seq_len=seq_len)
fetch_list = [
seq_label_task.variable("labels").name,
seq_label_task.variable("infers").name,
seq_label_task.variable("seq_len").name
]
# classification probability tensor
probs = seq_label_task.variable("probs")
# load best model checkpoint
fluid.io.load_persistables(exe, args.checkpoint_dir)
inference_program = program.clone(for_test=True)
# calculate the num of label from probs variable shape
num_labels = seq_label_task.variable("probs").shape[1]
data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
test_reader = reader.data_generator(phase='test', shuffle=False)
test_examples = dataset.get_test_examples()
total_label, total_infer, total_correct = 0.0, 0.0, 0.0
for index, batch in enumerate(test_reader()):
np_labels, np_infers, np_lens = exe.run(
feed=data_feeder.feed(batch),
fetch_list=fetch_list,
program=inference_program)
label_num, infer_num, correct_num = chunk_eval(
np_labels, np_infers, np_lens, num_labels)
total_infer += infer_num
total_label += label_num
total_correct += correct_num
labels = np_labels.reshape([-1]).astype(np.int32).tolist()
label_str = ""
count = 0
for label_val in labels:
label_str += inv_label_map[label_val]
count += 1
if count == np_lens:
break
print("%s\tpredict=%s" % (test_examples[index], label_str))
precision, recall, f1 = calculate_f1(total_label, total_infer,
total_correct)
print("F1-Score=%f, precision=%f, recall=%f " % (f1, precision, recall))
export CUDA_VISIBLE_DEVICES=0
CKPT_DIR="./ckpt_sequence_label/best_model"
python -u predict.py --checkpoint_dir $CKPT_DIR --max_seq_len 128 --use_gpu True
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册