Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
c8d399db
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
284
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c8d399db
编写于
7月 01, 2021
作者:
K
KP
提交者:
GitHub
7月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Cache tokenizer in TransformerModule (#1491)
上级
8c304a76
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
10 addition
and
12 deletion
+10
-12
modules/text/text_generation/ernie_gen/template/module.temp
modules/text/text_generation/ernie_gen/template/module.temp
+6
-2
paddlehub/module/nlp_module.py
paddlehub/module/nlp_module.py
+4
-10
未找到文件。
modules/text/text_generation/ernie_gen/template/module.temp
浏览文件 @
c8d399db
...
@@ -38,7 +38,7 @@ from .decode import beam_search_infilling
...
@@ -38,7 +38,7 @@ from .decode import beam_search_infilling
type="nlp/text_generation",
type="nlp/text_generation",
)
)
class ErnieGen(hub.NLPPredictionModule):
class ErnieGen(hub.NLPPredictionModule):
def _
initialize
(self):
def _
_init__
(self):
"""
"""
initialize with the necessary elements
initialize with the necessary elements
"""
"""
...
@@ -66,6 +66,8 @@ class ErnieGen(hub.NLPPredictionModule):
...
@@ -66,6 +66,8 @@ class ErnieGen(hub.NLPPredictionModule):
Returns:
Returns:
results(list): the predict result.
results(list): the predict result.
"""
"""
paddle.disable_static()
if texts and isinstance(texts, list) and all(texts) and all(
if texts and isinstance(texts, list) and all(texts) and all(
[isinstance(text, str) for text in texts]):
[isinstance(text, str) for text in texts]):
predicted_data = texts
predicted_data = texts
...
@@ -79,7 +81,9 @@ class ErnieGen(hub.NLPPredictionModule):
...
@@ -79,7 +81,9 @@ class ErnieGen(hub.NLPPredictionModule):
logger.warning(
logger.warning(
"use_gpu has been set False as you didn't set the environment variable CUDA_VISIBLE_DEVICES while using use_gpu=True"
"use_gpu has been set False as you didn't set the environment variable CUDA_VISIBLE_DEVICES while using use_gpu=True"
)
)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
self.model.eval()
self.model.eval()
results = []
results = []
for text in predicted_data:
for text in predicted_data:
...
@@ -155,4 +159,4 @@ class ErnieGen(hub.NLPPredictionModule):
...
@@ -155,4 +159,4 @@ class ErnieGen(hub.NLPPredictionModule):
results = self.generate(
results = self.generate(
texts=input_data, use_gpu=args.use_gpu, beam_width=args.beam_width)
texts=input_data, use_gpu=args.use_gpu, beam_width=args.beam_width)
return results
return results
\ No newline at end of file
paddlehub/module/nlp_module.py
浏览文件 @
c8d399db
...
@@ -91,7 +91,6 @@ class InitTrackerMeta(type(nn.Layer)):
...
@@ -91,7 +91,6 @@ class InitTrackerMeta(type(nn.Layer)):
help_func (callable, optional): If provided, it would be hooked after
help_func (callable, optional): If provided, it would be hooked after
`init_func` and called as `_wrap_init(self, init_func, *init_args, **init_args)`.
`init_func` and called as `_wrap_init(self, init_func, *init_args, **init_args)`.
Default None.
Default None.
Returns:
Returns:
function: the wrapped function
function: the wrapped function
"""
"""
...
@@ -142,7 +141,6 @@ class PretrainedModel(nn.Layer):
...
@@ -142,7 +141,6 @@ class PretrainedModel(nn.Layer):
- `pretrained_init_configuration` (dict): The dict has pretrained model names
- `pretrained_init_configuration` (dict): The dict has pretrained model names
as keys, and the values are also dict preserving corresponding configuration
as keys, and the values are also dict preserving corresponding configuration
for model initialization.
for model initialization.
- `base_model_prefix` (str): represents the the attribute associated to the
- `base_model_prefix` (str): represents the the attribute associated to the
base model in derived classes of the same architecture adding layers on
base model in derived classes of the same architecture adding layers on
top of the base model.
top of the base model.
...
@@ -365,14 +363,12 @@ class TextServing(object):
...
@@ -365,14 +363,12 @@ class TextServing(object):
1. seq-cls: sequence classification;
1. seq-cls: sequence classification;
2. token-cls: sequence labeling;
2. token-cls: sequence labeling;
3. None: embedding.
3. None: embedding.
Args:
Args:
data (obj:`List(List(str))`): The processed data whose each element is the list of a single text or a pair of texts.
data (obj:`List(List(str))`): The processed data whose each element is the list of a single text or a pair of texts.
max_seq_len (:obj:`int`, `optional`, defaults to 128):
max_seq_len (:obj:`int`, `optional`, defaults to 128):
If set to a number, will limit the total sequence returned so that it has a maximum length.
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
Returns:
results(obj:`list`): All the predictions labels.
results(obj:`list`): All the predictions labels.
"""
"""
...
@@ -465,11 +461,12 @@ class TransformerModule(RunModule, TextServing):
...
@@ -465,11 +461,12 @@ class TransformerModule(RunModule, TextServing):
title_segment_ids
=
[
entry
[
3
]
for
entry
in
batch
]
title_segment_ids
=
[
entry
[
3
]
for
entry
in
batch
]
return
query_input_ids
,
query_segment_ids
,
title_input_ids
,
title_segment_ids
return
query_input_ids
,
query_segment_ids
,
title_input_ids
,
title_segment_ids
tokenizer
=
self
.
get_tokenizer
()
if
not
hasattr
(
self
,
'tokenizer'
):
self
.
tokenizer
=
self
.
get_tokenizer
()
examples
=
[]
examples
=
[]
for
texts
in
data
:
for
texts
in
data
:
encoded_inputs
=
self
.
_convert_text_to_input
(
tokenizer
,
texts
,
max_seq_len
,
split_char
)
encoded_inputs
=
self
.
_convert_text_to_input
(
self
.
tokenizer
,
texts
,
max_seq_len
,
split_char
)
example
=
[]
example
=
[]
for
inp
in
encoded_inputs
:
for
inp
in
encoded_inputs
:
input_ids
=
inp
[
'input_ids'
]
input_ids
=
inp
[
'input_ids'
]
...
@@ -538,7 +535,6 @@ class TransformerModule(RunModule, TextServing):
...
@@ -538,7 +535,6 @@ class TransformerModule(RunModule, TextServing):
Args:
Args:
data (obj:`List(List(str))`): The processed data whose each element is the list of a single text or a pair of texts.
data (obj:`List(List(str))`): The processed data whose each element is the list of a single text or a pair of texts.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
Returns:
results(obj:`list`): All the tokens and sentences embeddings.
results(obj:`list`): All the tokens and sentences embeddings.
"""
"""
...
@@ -556,7 +552,6 @@ class TransformerModule(RunModule, TextServing):
...
@@ -556,7 +552,6 @@ class TransformerModule(RunModule, TextServing):
return_prob
:
bool
=
False
):
return_prob
:
bool
=
False
):
"""
"""
Predicts the data labels.
Predicts the data labels.
Args:
Args:
data (obj:`List(List(str))`): The processed data whose each element is the list of a single text or a pair of texts.
data (obj:`List(List(str))`): The processed data whose each element is the list of a single text or a pair of texts.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
...
@@ -564,8 +559,7 @@ class TransformerModule(RunModule, TextServing):
...
@@ -564,8 +559,7 @@ class TransformerModule(RunModule, TextServing):
split_char(obj:`str`, defaults to '
\002
'): The char used to split input tokens in token-cls task.
split_char(obj:`str`, defaults to '
\002
'): The char used to split input tokens in token-cls task.
batch_size(obj:`int`, defaults to 1): The number of batch.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
return_prob(obj:`bool`, defaults to `False`): Whether to return label probabilities.
return_prob(obj:`bool`, defaults to `False`): Whether to return label probabilities.
Returns:
Returns:
results(obj:`list`): All the predictions labels.
results(obj:`list`): All the predictions labels.
"""
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录