Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
c671ab1b
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c671ab1b
编写于
2月 25, 2020
作者:
Z
Zeyu Chen
提交者:
GitHub
2月 25, 2020
浏览文件
操作
浏览文件
下载
差异文件
add python support for mask detection (#381)
* add python support for mask detection * add readme
上级
3e780056
0dcc5026
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
362 addition
and
0 deletion
+362
-0
demo/mask_detection/python/README.md
demo/mask_detection/python/README.md
+61
-0
demo/mask_detection/python/export_model.py
demo/mask_detection/python/export_model.py
+27
-0
demo/mask_detection/python/infer.py
demo/mask_detection/python/infer.py
+274
-0
未找到文件。
demo/mask_detection/python/README.md
浏览文件 @
c671ab1b
# 口罩佩戴检测模型Python高性能部署方案
# 口罩佩戴检测模型Python高性能部署方案
百度通过 PaddleHub 开源了业界首个口罩人脸检测及人类模型,该模型可以有效检测在密集人类区域中携带和未携带口罩的所有人脸,同时判断出是否有佩戴口罩。开发者可以通过 PaddleHub 快速体验模型效果、搭建在线服务。
本文档主要介绍如何完成基于
`python`
的口罩佩戴检测预测。
主要包含两个步骤:
-
[
1. PaddleHub导出预测模型
](
#1-paddlehub导出预测模型
)
-
[
2. 基于python的预测
](
#2-预测部署编译
)
## 1. PaddleHub导出预测模型
#### 1.1 安装 `PaddlePaddle` 和 `PaddleHub`
-
`PaddlePaddle`
的安装:
请点击
[
官方安装文档
](
https://paddlepaddle.org.cn/install/quick
)
选择适合的方式
-
`PaddleHub`
的安装:
`pip install paddlehub`
-
`opencv`
的安装:
`pip install opencv-python`
-
#### 1.2 从`PaddleHub`导出预测模型
```
git clone https://github.com/PaddlePaddle/PaddleHub.git
cd PaddleHub/demo/mask_detection/python/
python export_model.py
```
在有网络访问条件下,执行
`python export_model.py`
导出两个可用于推理部署的口罩模型
其中
`pyramidbox_lite_mobile_mask`
为移动版模型, 模型更小,计算量低;
`pyramidbox_lite_server_mask`
为服务器版模型,在此推荐该版本模型,精度相对移动版本更高。
成功执行代码后导出的模型路径结构:
```
pyramidbox_lite_mobile_mask
|
├── mask_detector # 口罩人脸分类模型
| ├── __model__ # 模型文件
│ └── __params__ # 参数文件
|
└── pyramidbox_lite # 口罩人脸检测模型
├── __model__ # 模型文件
└── __params__ # 参数文件
```
## 2. 基于python的预测
### 2.1 执行预测程序
在终端输入以下命令进行预测:
```
bash
python infer.py
--models_dir
=
/path/to/models
--img_paths
=
/path/to/images
--video_path
=
/path/to/video
--video_size
=
size/of/video
--use_camera
=(
False/True
)
--use_gpu
=(
False/True
)
```
参数说明如下:
| 参数 | 是否必须|含义 |
|-------|-------|----------|
| models_dir | Yes|两个模型路径./pyramidbox_lite_mobile_mask |
| img_paths |img_paths/video_path 二选一|需要预测的图片目录 |
| video_path |img_paths/video_path 二选一|需要预测的视频目录|
| video_size |No|预测视频分辨率大小(w,h) |
| use_camera |No|是否打开摄像头进行预测 |
| use_gpu |No|是否GPU,默认为False|
##3. 可视化
demo/mask_detection/python/export_model.py
0 → 100644
浏览文件 @
c671ab1b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddlehub
as
hub
# Load mask detector module from PaddleHub
module
=
hub
.
Module
(
name
=
"pyramidbox_lite_server_mask"
)
# Export inference model for deployment
module
.
processor
.
save_inference_model
(
"./pyramidbox_lite_server_mask"
)
print
(
"pyramidbox_lite_server_mask module export done!"
)
# Load mask detector (mobile version) module from PaddleHub
module
=
hub
.
Module
(
name
=
"pyramidbox_lite_mobile_mask"
)
# Export inference model for deployment
module
.
processor
.
save_inference_model
(
"./pyramidbox_lite_mobile_mask"
)
print
(
"pyramidbox_lite_mobile_mask module export done!"
)
demo/mask_detection/python/infer.py
0 → 100644
浏览文件 @
c671ab1b
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
ast
import
time
import
json
import
argparse
import
numpy
as
np
import
cv2
import
paddle.fluid
as
fluid
from
PIL
import
Image
from
PIL
import
ImageDraw
import
argparse
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
'mask detection.'
)
parser
.
add_argument
(
'--models_dir'
,
type
=
str
,
default
=
''
,
help
=
'path of models.'
)
parser
.
add_argument
(
'--img_paths'
,
type
=
str
,
default
=
''
,
help
=
'path of images'
)
parser
.
add_argument
(
'--video_path'
,
type
=
str
,
default
=
''
,
help
=
'path of video.'
)
parser
.
add_argument
(
'--video_size'
,
type
=
tuple
,
default
=
(
1920
,
1080
),
help
=
'size of video.'
)
parser
.
add_argument
(
'--use_camera'
,
type
=
bool
,
default
=
False
,
help
=
'switch detect video or camera, default:video.'
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
bool
,
default
=
False
,
help
=
'switch cpu/gpu, default:cpu.'
)
args
=
parser
.
parse_args
()
return
args
class
FaceResult
:
def
__init__
(
self
,
rect_data
,
rect_info
):
self
.
rect_info
=
rect_info
self
.
rect_data
=
rect_data
self
.
class_id
=
-
1
self
.
score
=
0.0
def
VisualizeResult
(
im
,
faces
):
LABELS
=
[
'NO_MASK'
,
'MASK'
]
COLORS
=
[(
0
,
0
,
255
),
(
0
,
255
,
0
)]
for
face
in
faces
:
label
=
LABELS
[
face
.
class_id
]
color
=
COLORS
[
face
.
class_id
]
left
,
right
,
top
,
bottom
=
[
int
(
item
)
for
item
in
face
.
rect_info
]
label_position
=
(
left
,
top
)
cv2
.
putText
(
im
,
label
,
label_position
,
cv2
.
FONT_HERSHEY_SIMPLEX
,
1
,
color
,
2
,
cv2
.
LINE_AA
)
cv2
.
rectangle
(
im
,
(
left
,
top
),
(
right
,
bottom
),
color
,
3
)
return
im
def
LoadModel
(
model_dir
,
use_gpu
=
False
):
config
=
fluid
.
core
.
AnalysisConfig
(
model_dir
+
'/__model__'
,
model_dir
+
'/__params__'
)
if
use_gpu
:
config
.
enable_use_gpu
(
100
,
0
)
config
.
switch_ir_optim
(
True
)
else
:
config
.
disable_gpu
()
config
.
disable_glog_info
()
config
.
switch_specify_input_names
(
True
)
config
.
enable_memory_optim
()
return
fluid
.
core
.
create_paddle_predictor
(
config
)
class
MaskClassifier
:
def
__init__
(
self
,
model_dir
,
mean
,
scale
,
use_gpu
=
False
):
self
.
mean
=
np
.
array
(
mean
).
reshape
((
3
,
1
,
1
))
self
.
scale
=
np
.
array
(
scale
).
reshape
((
3
,
1
,
1
))
self
.
predictor
=
LoadModel
(
model_dir
,
use_gpu
)
self
.
EVAL_SIZE
=
(
128
,
128
)
def
Preprocess
(
self
,
faces
):
h
,
w
=
self
.
EVAL_SIZE
[
1
],
self
.
EVAL_SIZE
[
0
]
inputs
=
[]
for
face
in
faces
:
im
=
cv2
.
resize
(
face
.
rect_data
,
(
128
,
128
),
fx
=
0
,
fy
=
0
,
interpolation
=
cv2
.
INTER_CUBIC
)
# HWC -> CHW
im
=
im
.
swapaxes
(
1
,
2
)
im
=
im
.
swapaxes
(
0
,
1
)
# Convert to float
im
=
im
[:,
:,
:].
astype
(
'float32'
)
/
256.0
# im = (im - mean) * scale
im
=
im
-
self
.
mean
im
=
im
*
self
.
scale
im
=
im
[
np
.
newaxis
,
:,
:,
:]
inputs
.
append
(
im
)
return
inputs
def
Postprocess
(
self
,
output_data
,
faces
):
argmx
=
np
.
argmax
(
output_data
,
axis
=
1
)
for
idx
in
range
(
len
(
faces
)):
faces
[
idx
].
class_id
=
argmx
[
idx
]
faces
[
idx
].
score
=
output_data
[
idx
][
argmx
[
idx
]]
return
faces
def
Predict
(
self
,
faces
):
inputs
=
self
.
Preprocess
(
faces
)
if
len
(
inputs
)
!=
0
:
input_data
=
np
.
concatenate
(
inputs
)
im_tensor
=
fluid
.
core
.
PaddleTensor
(
input_data
.
copy
().
astype
(
'float32'
))
output_data
=
self
.
predictor
.
run
([
im_tensor
])[
1
]
output_data
=
output_data
.
as_ndarray
()
self
.
Postprocess
(
output_data
,
faces
)
class
FaceDetector
:
def
__init__
(
self
,
model_dir
,
mean
,
scale
,
use_gpu
=
False
,
threshold
=
0.7
):
self
.
mean
=
np
.
array
(
mean
).
reshape
((
3
,
1
,
1
))
self
.
scale
=
np
.
array
(
scale
).
reshape
((
3
,
1
,
1
))
self
.
threshold
=
threshold
self
.
predictor
=
LoadModel
(
model_dir
,
use_gpu
)
def
Preprocess
(
self
,
image
,
shrink
):
h
,
w
=
int
(
image
.
shape
[
1
]
*
shrink
),
int
(
image
.
shape
[
0
]
*
shrink
)
im
=
cv2
.
resize
(
image
,
(
h
,
w
),
fx
=
0
,
fy
=
0
,
interpolation
=
cv2
.
INTER_CUBIC
)
# HWC -> CHW
im
=
im
.
swapaxes
(
1
,
2
)
im
=
im
.
swapaxes
(
0
,
1
)
# Convert to float
im
=
im
[:,
:,
:].
astype
(
'float32'
)
# im = (im - mean) * scale
im
=
im
-
self
.
mean
im
=
im
*
self
.
scale
im
=
im
[
np
.
newaxis
,
:,
:,
:]
return
im
def
Postprocess
(
self
,
output_data
,
ori_im
,
shrink
):
det_out
=
[]
h
,
w
=
ori_im
.
shape
[
0
],
ori_im
.
shape
[
1
]
for
out
in
output_data
:
class_id
=
int
(
out
[
0
])
score
=
out
[
1
]
xmin
=
(
out
[
2
]
*
w
)
ymin
=
(
out
[
3
]
*
h
)
xmax
=
(
out
[
4
]
*
w
)
ymax
=
(
out
[
5
]
*
h
)
wd
=
xmax
-
xmin
hd
=
ymax
-
ymin
valid
=
(
xmax
>=
xmin
and
xmin
>
0
and
ymax
>=
ymin
and
ymin
>
0
)
if
score
>
self
.
threshold
and
valid
:
roi_rect
=
ori_im
[
int
(
ymin
):
int
(
ymax
),
int
(
xmin
):
int
(
xmax
)]
det_out
.
append
(
FaceResult
(
roi_rect
,
[
xmin
,
xmax
,
ymin
,
ymax
]))
return
det_out
def
Predict
(
self
,
image
,
shrink
):
ori_im
=
image
.
copy
()
im
=
self
.
Preprocess
(
image
,
shrink
)
im_tensor
=
fluid
.
core
.
PaddleTensor
(
im
.
copy
().
astype
(
'float32'
))
output_data
=
self
.
predictor
.
run
([
im_tensor
])[
0
]
output_data
=
output_data
.
as_ndarray
()
return
self
.
Postprocess
(
output_data
,
ori_im
,
shrink
)
def
predict_images
(
args
):
detector
=
FaceDetector
(
model_dir
=
args
.
models_dir
+
'/pyramidbox_lite/'
,
mean
=
[
104.0
,
177.0
,
123.0
],
scale
=
[
0.007843
,
0.007843
,
0.007843
],
use_gpu
=
args
.
use_gpu
,
threshold
=
0.7
)
classifier
=
MaskClassifier
(
model_dir
=
args
.
models_dir
+
'/mask_detector/'
,
mean
=
[
0.5
,
0.5
,
0.5
],
scale
=
[
1.0
,
1.0
,
1.0
],
use_gpu
=
args
.
use_gpu
)
names
=
[]
image_paths
=
[]
for
name
in
os
.
listdir
(
args
.
img_paths
):
if
name
.
split
(
'.'
)[
-
1
]
in
[
'jpg'
,
'png'
,
'jpeg'
]:
names
.
append
(
name
)
image_paths
.
append
(
os
.
path
.
join
(
args
.
img_paths
,
name
))
images
=
[
cv2
.
imread
(
path
,
cv2
.
IMREAD_COLOR
)
for
path
in
image_paths
]
path
=
'./result'
isExists
=
os
.
path
.
exists
(
path
)
if
not
isExists
:
os
.
makedirs
(
path
)
for
idx
in
range
(
len
(
images
)):
im
=
images
[
idx
]
det_out
=
detector
.
Predict
(
im
,
shrink
=
0.7
)
classifier
.
Predict
(
det_out
)
img
=
VisualizeResult
(
im
,
det_out
)
cv2
.
imwrite
(
os
.
path
.
join
(
path
,
names
[
idx
]
+
'.result.jpg'
),
img
)
def
predict_video
(
args
,
im_shape
=
(
1920
,
1080
),
use_camera
=
False
):
if
args
.
use_camera
:
capture
=
cv2
.
VideoCapture
(
0
)
else
:
capture
=
cv2
.
VideoCapture
(
args
.
video_path
)
detector
=
FaceDetector
(
model_dir
=
args
.
models_dir
+
'/pyramidbox_lite/'
,
mean
=
[
104.0
,
177.0
,
123.0
],
scale
=
[
0.007843
,
0.007843
,
0.007843
],
use_gpu
=
args
.
use_gpu
,
threshold
=
0.7
)
classifier
=
MaskClassifier
(
model_dir
=
args
.
models_dir
+
'/mask_detector/'
,
mean
=
[
0.5
,
0.5
,
0.5
],
scale
=
[
1.0
,
1.0
,
1.0
],
use_gpu
=
args
.
use_gpu
)
path
=
'./result'
isExists
=
os
.
path
.
exists
(
path
)
if
not
isExists
:
os
.
makedirs
(
path
)
fps
=
30
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
os
.
path
.
join
(
path
,
'result.mp4'
),
fourcc
,
fps
,
args
.
video_size
)
import
time
start_time
=
time
.
time
()
index
=
0
while
(
1
):
ret
,
frame
=
capture
.
read
()
if
not
ret
:
break
print
(
'detect frame:%d'
%
(
index
))
index
+=
1
det_out
=
detector
.
Predict
(
frame
,
shrink
=
0.5
)
classifier
.
Predict
(
det_out
)
end_pre
=
time
.
time
()
im
=
VisualizeResult
(
frame
,
det_out
)
writer
.
write
(
im
)
end_time
=
time
.
time
()
print
(
"include read time:"
,
(
end_time
-
start_time
)
/
index
)
writer
.
release
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
print
(
args
.
models_dir
)
if
args
.
img_paths
!=
''
:
predict_images
(
args
)
elif
args
.
video_path
!=
''
:
predict_video
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录