未验证 提交 c671ab1b 编写于 作者: Z Zeyu Chen 提交者: GitHub

add python support for mask detection (#381)

* add python support for mask detection

* add readme
# 口罩佩戴检测模型Python高性能部署方案 # 口罩佩戴检测模型Python高性能部署方案
百度通过 PaddleHub 开源了业界首个口罩人脸检测及人类模型,该模型可以有效检测在密集人类区域中携带和未携带口罩的所有人脸,同时判断出是否有佩戴口罩。开发者可以通过 PaddleHub 快速体验模型效果、搭建在线服务。
本文档主要介绍如何完成基于`python`的口罩佩戴检测预测。
主要包含两个步骤:
- [1. PaddleHub导出预测模型](#1-paddlehub导出预测模型)
- [2. 基于python的预测](#2-预测部署编译)
## 1. PaddleHub导出预测模型
#### 1.1 安装 `PaddlePaddle` 和 `PaddleHub`
- `PaddlePaddle`的安装:
请点击[官方安装文档](https://paddlepaddle.org.cn/install/quick) 选择适合的方式
- `PaddleHub`的安装: `pip install paddlehub`
- `opencv`的安装: `pip install opencv-python`
-
#### 1.2 从`PaddleHub`导出预测模型
```
git clone https://github.com/PaddlePaddle/PaddleHub.git
cd PaddleHub/demo/mask_detection/python/
python export_model.py
```
在有网络访问条件下,执行`python export_model.py`导出两个可用于推理部署的口罩模型
其中`pyramidbox_lite_mobile_mask`为移动版模型, 模型更小,计算量低;
`pyramidbox_lite_server_mask`为服务器版模型,在此推荐该版本模型,精度相对移动版本更高。
成功执行代码后导出的模型路径结构:
```
pyramidbox_lite_mobile_mask
|
├── mask_detector # 口罩人脸分类模型
| ├── __model__ # 模型文件
│ └── __params__ # 参数文件
|
└── pyramidbox_lite # 口罩人脸检测模型
├── __model__ # 模型文件
└── __params__ # 参数文件
```
## 2. 基于python的预测
### 2.1 执行预测程序
在终端输入以下命令进行预测:
```bash
python infer.py --models_dir=/path/to/models --img_paths=/path/to/images --video_path=/path/to/video --video_size=size/of/video --use_camera=(False/True)
--use_gpu=(False/True)
```
参数说明如下:
| 参数 | 是否必须|含义 |
|-------|-------|----------|
| models_dir | Yes|两个模型路径./pyramidbox_lite_mobile_mask |
| img_paths |img_paths/video_path 二选一|需要预测的图片目录 |
| video_path |img_paths/video_path 二选一|需要预测的视频目录|
| video_size |No|预测视频分辨率大小(w,h) |
| use_camera |No|是否打开摄像头进行预测 |
| use_gpu |No|是否GPU,默认为False|
##3. 可视化
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddlehub as hub
# Load mask detector module from PaddleHub
module = hub.Module(name="pyramidbox_lite_server_mask")
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_server_mask")
print("pyramidbox_lite_server_mask module export done!")
# Load mask detector (mobile version) module from PaddleHub
module = hub.Module(name="pyramidbox_lite_mobile_mask")
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_mobile_mask")
print("pyramidbox_lite_mobile_mask module export done!")
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import ast
import time
import json
import argparse
import numpy as np
import cv2
import paddle.fluid as fluid
from PIL import Image
from PIL import ImageDraw
import argparse
def parse_args():
parser = argparse.ArgumentParser('mask detection.')
parser.add_argument(
'--models_dir', type=str, default='', help='path of models.')
parser.add_argument(
'--img_paths', type=str, default='', help='path of images')
parser.add_argument(
'--video_path', type=str, default='', help='path of video.')
parser.add_argument(
'--video_size', type=tuple, default=(1920, 1080), help='size of video.')
parser.add_argument(
'--use_camera',
type=bool,
default=False,
help='switch detect video or camera, default:video.')
parser.add_argument(
'--use_gpu',
type=bool,
default=False,
help='switch cpu/gpu, default:cpu.')
args = parser.parse_args()
return args
class FaceResult:
def __init__(self, rect_data, rect_info):
self.rect_info = rect_info
self.rect_data = rect_data
self.class_id = -1
self.score = 0.0
def VisualizeResult(im, faces):
LABELS = ['NO_MASK', 'MASK']
COLORS = [(0, 0, 255), (0, 255, 0)]
for face in faces:
label = LABELS[face.class_id]
color = COLORS[face.class_id]
left, right, top, bottom = [int(item) for item in face.rect_info]
label_position = (left, top)
cv2.putText(im, label, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1,
color, 2, cv2.LINE_AA)
cv2.rectangle(im, (left, top), (right, bottom), color, 3)
return im
def LoadModel(model_dir, use_gpu=False):
config = fluid.core.AnalysisConfig(model_dir + '/__model__',
model_dir + '/__params__')
if use_gpu:
config.enable_use_gpu(100, 0)
config.switch_ir_optim(True)
else:
config.disable_gpu()
config.disable_glog_info()
config.switch_specify_input_names(True)
config.enable_memory_optim()
return fluid.core.create_paddle_predictor(config)
class MaskClassifier:
def __init__(self, model_dir, mean, scale, use_gpu=False):
self.mean = np.array(mean).reshape((3, 1, 1))
self.scale = np.array(scale).reshape((3, 1, 1))
self.predictor = LoadModel(model_dir, use_gpu)
self.EVAL_SIZE = (128, 128)
def Preprocess(self, faces):
h, w = self.EVAL_SIZE[1], self.EVAL_SIZE[0]
inputs = []
for face in faces:
im = cv2.resize(
face.rect_data, (128, 128),
fx=0,
fy=0,
interpolation=cv2.INTER_CUBIC)
# HWC -> CHW
im = im.swapaxes(1, 2)
im = im.swapaxes(0, 1)
# Convert to float
im = im[:, :, :].astype('float32') / 256.0
# im = (im - mean) * scale
im = im - self.mean
im = im * self.scale
im = im[np.newaxis, :, :, :]
inputs.append(im)
return inputs
def Postprocess(self, output_data, faces):
argmx = np.argmax(output_data, axis=1)
for idx in range(len(faces)):
faces[idx].class_id = argmx[idx]
faces[idx].score = output_data[idx][argmx[idx]]
return faces
def Predict(self, faces):
inputs = self.Preprocess(faces)
if len(inputs) != 0:
input_data = np.concatenate(inputs)
im_tensor = fluid.core.PaddleTensor(
input_data.copy().astype('float32'))
output_data = self.predictor.run([im_tensor])[1]
output_data = output_data.as_ndarray()
self.Postprocess(output_data, faces)
class FaceDetector:
def __init__(self, model_dir, mean, scale, use_gpu=False, threshold=0.7):
self.mean = np.array(mean).reshape((3, 1, 1))
self.scale = np.array(scale).reshape((3, 1, 1))
self.threshold = threshold
self.predictor = LoadModel(model_dir, use_gpu)
def Preprocess(self, image, shrink):
h, w = int(image.shape[1] * shrink), int(image.shape[0] * shrink)
im = cv2.resize(
image, (h, w), fx=0, fy=0, interpolation=cv2.INTER_CUBIC)
# HWC -> CHW
im = im.swapaxes(1, 2)
im = im.swapaxes(0, 1)
# Convert to float
im = im[:, :, :].astype('float32')
# im = (im - mean) * scale
im = im - self.mean
im = im * self.scale
im = im[np.newaxis, :, :, :]
return im
def Postprocess(self, output_data, ori_im, shrink):
det_out = []
h, w = ori_im.shape[0], ori_im.shape[1]
for out in output_data:
class_id = int(out[0])
score = out[1]
xmin = (out[2] * w)
ymin = (out[3] * h)
xmax = (out[4] * w)
ymax = (out[5] * h)
wd = xmax - xmin
hd = ymax - ymin
valid = (xmax >= xmin and xmin > 0 and ymax >= ymin and ymin > 0)
if score > self.threshold and valid:
roi_rect = ori_im[int(ymin):int(ymax), int(xmin):int(xmax)]
det_out.append(FaceResult(roi_rect, [xmin, xmax, ymin, ymax]))
return det_out
def Predict(self, image, shrink):
ori_im = image.copy()
im = self.Preprocess(image, shrink)
im_tensor = fluid.core.PaddleTensor(im.copy().astype('float32'))
output_data = self.predictor.run([im_tensor])[0]
output_data = output_data.as_ndarray()
return self.Postprocess(output_data, ori_im, shrink)
def predict_images(args):
detector = FaceDetector(
model_dir=args.models_dir + '/pyramidbox_lite/',
mean=[104.0, 177.0, 123.0],
scale=[0.007843, 0.007843, 0.007843],
use_gpu=args.use_gpu,
threshold=0.7)
classifier = MaskClassifier(
model_dir=args.models_dir + '/mask_detector/',
mean=[0.5, 0.5, 0.5],
scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
names = []
image_paths = []
for name in os.listdir(args.img_paths):
if name.split('.')[-1] in ['jpg', 'png', 'jpeg']:
names.append(name)
image_paths.append(os.path.join(args.img_paths, name))
images = [cv2.imread(path, cv2.IMREAD_COLOR) for path in image_paths]
path = './result'
isExists = os.path.exists(path)
if not isExists:
os.makedirs(path)
for idx in range(len(images)):
im = images[idx]
det_out = detector.Predict(im, shrink=0.7)
classifier.Predict(det_out)
img = VisualizeResult(im, det_out)
cv2.imwrite(os.path.join(path, names[idx] + '.result.jpg'), img)
def predict_video(args, im_shape=(1920, 1080), use_camera=False):
if args.use_camera:
capture = cv2.VideoCapture(0)
else:
capture = cv2.VideoCapture(args.video_path)
detector = FaceDetector(
model_dir=args.models_dir + '/pyramidbox_lite/',
mean=[104.0, 177.0, 123.0],
scale=[0.007843, 0.007843, 0.007843],
use_gpu=args.use_gpu,
threshold=0.7)
classifier = MaskClassifier(
model_dir=args.models_dir + '/mask_detector/',
mean=[0.5, 0.5, 0.5],
scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
path = './result'
isExists = os.path.exists(path)
if not isExists:
os.makedirs(path)
fps = 30
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(
os.path.join(path, 'result.mp4'), fourcc, fps, args.video_size)
import time
start_time = time.time()
index = 0
while (1):
ret, frame = capture.read()
if not ret:
break
print('detect frame:%d' % (index))
index += 1
det_out = detector.Predict(frame, shrink=0.5)
classifier.Predict(det_out)
end_pre = time.time()
im = VisualizeResult(frame, det_out)
writer.write(im)
end_time = time.time()
print("include read time:", (end_time - start_time) / index)
writer.release()
if __name__ == "__main__":
args = parse_args()
print(args.models_dir)
if args.img_paths != '':
predict_images(args)
elif args.video_path != '':
predict_video(args)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册