提交 bde4a185 编写于 作者: Z Zeyu

add nlp TL tutorial.md

上级 7591bd22
# 文本分类迁移
文本分类迁移是NLP在迁移学习中最常见的一个任务
## 一、准备工作
在开始进行finetune前,我们需要完成以下几个工作准备
### 1. 安装PaddlePaddle
PaddleHub是基于PaddlePaddle的预训练模型管理框架,使用PaddleHub前需要先安装PaddlePaddle,如果您本地已经安装了cpu或者gpu版本的PaddlePaddle,那么可以跳过以下安装步骤。
```shell
# 安装cpu版本的PaddlePaddle
$ pip install paddlepaddle
```
我们推荐您使用大于1.3.0版本的PaddlePaddle,如果您本地版本较低,使用如下命令进行升级
```shell
$ pip install --upgrade paddlepaddle
```
在安装过程中如果遇到问题,您可以到[Paddle官方网站](http://www.paddlepaddle.org/)上查看解决方案
### 2. 安装PaddleHub
通过以下命令来安装PaddleHub
```shell
$ pip install paddlehub
```
如果在安装过程中遇到问题,您可以查看下[FAQ](https://github.com/PaddlePaddle/PaddleHub/blob/develop/docs/FAQ.md)来查找问题解决方案,如果无法解决,请在issue中反馈问题,我们会尽快分析解决
## 二、挑选合适的模型
首先导入必要的python包
```python
# -*- coding: utf8 -*-
import paddlehub as hub
import paddle.fluid as fluid
```
接下来我们要在PaddleHub中选择合适的预训练模型来Finetune,由于猫狗分类是一个图像分类任务,因此我们使用经典的resnet50作为预训练模型。PaddleHub提供了丰富的图像分类预训练模型,包括了最新的神经网络架构搜索类的NASNet,我们推荐您尝试不同的预训练模型来获得更好的性能。
```python
module_map = {
"resnet50": "resnet_v2_50_imagenet",
"resnet101": "resnet_v2_101_imagenet",
"resnet152": "resnet_v2_152_imagenet",
"mobilenet": "mobilenet_v2_imagenet",
"nasnet": "nasnet_imagenet",
"pnasnet": "pnasnet_imagenet"
}
module_name = module_map["resnet50"]
cv_classifer_module = hub.Module(name = module_name)
```
## 三、数据准备
接着需要加载图片数据集。我们需要自己切分数据集,将数据集且分为训练集、验证集和测试集。
同时使用三个文本文件来记录对应的图片路径和标签
```
├─data: 数据目录
  ├─train_list.txt:训练集数据列表
  ├─test_list.txt:测试集数据列表
  ├─validate_list:验证集数据列表
  └─……
```
每个文件的格式如下
```
图片1路径 图片1标签
图片2路径 图片2标签
……
```
使用如下的方式进行加载数据,生成数据集对象
```python
# 使用本地数据集
class mydataset(hub.ImageClassificationDataset):
self.base_path = "data"
self.train_list_file = "train_list.txt"
self.test_list_file = "test_list.txt"
self.validate_list_file = "validate_list.txt"
self.num_labels = 2
dataset = mydataset()
```
如果想要快速体验finetune的流程,可以直接加载paddlehub提供的猫狗分类数据集
```python
# 直接用PaddleHub提供的数据集
dataset = hub.dataset.DogCat()
```
接着生成一个图像分类的reader,reader负责将dataset的数据进行预处理,接着以特定格式组织并输入给模型进行训练。
当我们生成一个图像分类的reader时,需要指定输入图片的大小
```python
data_reader = hub.reader.ImageClassificationReader(
image_width=cv_classifer_module.get_expected_image_width(),
image_height=cv_classifer_module.get_expected_image_height(),
images_mean=cv_classifer_module.get_pretrained_images_mean(),
images_std=cv_classifer_module.get_pretrained_images_std(),
dataset=dataset)
```
## 四、组建Finetune Task
有了合适的预训练模型和准备要迁移的数据集后,我们开始组建一个Task。
由于猫狗分类是一个二分类的任务,而我们下载的cv_classifer_module是在ImageNet数据集上训练的千分类模型,所以我们需要对模型进行简单的微调,把模型改造为一个二分类模型:
1. 获取cv_classifer_module的上下文环境,包括输入和输出的变量,以及Paddle Program
2. 从输出变量中找到特征图提取层feature_map
3. 在feature_map后面接入一个全连接层,生成Task
```python
input_dict, output_dict, program = cv_classifer_module.context(trainable=True)
img = input_dict["image"]
feature_map = output_dict["feature_map"]
task = hub.create_img_cls_task(
feature=feature_map, num_classes=dataset.num_labels)
feed_list = [img.name, task.variable("label").name]
```
## 五、选择运行时配置
在进行Finetune前,我们可以设置一些运行时的配置,例如如下代码中的配置,表示:
`epoch`:要求Finetune的任务只遍历10次训练集
`batch_size`:每次训练的时候,给模型输入的每批数据大小为32,模型训练时能够并行处理批数据,因此batch_size越大,训练的效率越高,但是同时带来了内存的负荷,过大的batch_size可能导致内存不足而无法训练,因此选择一个合适的batch_size是很重要的一步。
`log_interval`:每隔10 step打印一次训练日志
`eval_interval`:每隔50 step在验证集上进行一次性能评估。
`checkpoint_dir`:将训练的参数和数据保存到cv_finetune_turtorial_demo目录中
更多运行配置,请查看[RunConfig](https://github.com/PaddlePaddle/PaddleHub/tree/develop/docs/API/RunConfig.md)
```python
config = hub.RunConfig(
num_epoch=10,
checkpoint_dir="cv_finetune_turtorial_demo",
batch_size=32,
log_interval=10,
eval_interval=50)
```
## 六、开始Finetune
我们选择`finetune_and_eval`接口来进行模型训练,这个接口在finetune的过程中,会周期性的进行模型效果的评估,以便我们了解整个训练过程的性能变化。如果您并不关心中间过程数据,那么可以使用`finetune`接口来替代
```python
hub.finetune_and_eval(
task, feed_list=feed_list, data_reader=data_reader, config=config)
```
## 七、查看训练过程的效果
训练过程中的性能数据会被记录到本地,我们可以通过visualdl来可视化这些数据
我们在shell中输入以下命令来启动visualdl,其中`${HOST_IP}`为本机IP,需要用户自行指定
```shell
$ visualdl --logdir ./cv_finetune_turtorial_demo --host ${HOST_IP} --port 8989
```
启动服务后,我们使用浏览器访问`${HOST_IP}:8989`,可以看到训练以及预测的loss曲线和accuracy曲线
![img](https://paddlehub.bj.bcebos.com/resources/cv_turtorial_vdl_log.JPG)
## 八、使用模型进行预测
当Finetune完成后,我们使用模型来进行预测,整个预测流程大致可以分为以下几步:
1. 构建网络
2. 生成预测数据的Reader
3. 切换到预测的Program
4. 加载预训练好的参数
5. 运行Program进行预测
`注意`:预测所用的测试图片请自行准备
完整代码如下:
```python
import os
import numpy as np
# Step 1: build Program
input_dict, output_dict, program = cv_classifer_module.context(trainable=True)
img = input_dict["image"]
feature_map = output_dict["feature_map"]
task = hub.create_img_cls_task(
feature=feature_map, num_classes=dataset.num_labels)
feed_list = [img.name]
# Step 2: create data reader
data = [
"test_img_dog.jpg",
"test_img_cat.jpg"
]
data_reader = hub.reader.ImageClassificationReader(
image_width=cv_classifer_module.get_expected_image_width(),
image_height=cv_classifer_module.get_expected_image_height(),
images_mean=cv_classifer_module.get_pretrained_images_mean(),
images_std=cv_classifer_module.get_pretrained_images_std(),
dataset=None)
predict_reader = data_reader.data_generator(
phase="predict", batch_size=1, data=data)
# Step 3: switch to inference program
with fluid.program_guard(task.inference_program()):
# Step 4: load pretrained parameters
place = fluid.CPUPlace()
exe = fluid.Executor(place)
pretrained_model_dir = os.path.join("cv_finetune_turtorial_demo", "best_model")
fluid.io.load_persistables(exe, pretrained_model_dir)
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
# Step 5: predict
for index, batch in enumerate(predict_reader()):
result, = exe.run(
feed=feeder.feed(batch), fetch_list=[task.variable('probs')])
predict_result = np.argsort(result[0])[::-1][0]
print("input %i is %s, and the predict result is %s" %
(index+1, data[index], predict_result))
```
......@@ -23,5 +23,5 @@ PaddleHub提供了基于PaddlePaddle框架实现的Finetune API, 重点针对大
教程会涵盖CV领域的图像分类迁移,和NLP文本分类迁移两种任务。
* [CV教程](https://github.com/PaddlePaddle/PaddleHub/tree/develop/docs/turtorial/cv_finetune_turtorial.md)
* [NLP教程]()
* [CV教程](https://github.com/PaddlePaddle/PaddleHub/tree/develop/docs/turtorial/cv_finetune_tutorial.md)
* [NLP教程](https://github.com/PaddlePaddle/PaddleHub/tree/develop/docs/turtorial/nlp_finetune_tutorial.md)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册