Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
b0149dc3
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b0149dc3
编写于
4月 18, 2019
作者:
Z
zhangxuefei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Modify the linear_warmup_decay to linear_decay
上级
7bdce56e
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
11 addition
and
11 deletion
+11
-11
demo/sequence-labeling/sequence_label.py
demo/sequence-labeling/sequence_label.py
+1
-1
demo/text-classification/README.md
demo/text-classification/README.md
+2
-2
demo/text-classification/text_classifier.py
demo/text-classification/text_classifier.py
+1
-1
docs/API/Strategy.md
docs/API/Strategy.md
+2
-2
paddlehub/finetune/optimization.py
paddlehub/finetune/optimization.py
+3
-3
paddlehub/finetune/strategy.py
paddlehub/finetune/strategy.py
+2
-2
未找到文件。
demo/sequence-labeling/sequence_label.py
浏览文件 @
b0149dc3
...
...
@@ -69,7 +69,7 @@ if __name__ == '__main__':
strategy
=
hub
.
AdamWeightDecayStrategy
(
weight_decay
=
args
.
weight_decay
,
learning_rate
=
args
.
learning_rate
,
lr_scheduler
=
"linear_
warmup_
decay"
,
lr_scheduler
=
"linear_decay"
,
)
# Setup runing config for PaddleHub Finetune API
...
...
demo/text-classification/README.md
浏览文件 @
b0149dc3
...
...
@@ -111,7 +111,7 @@ strategy = hub.AdamWeightDecayStrategy(
learning_rate
=
5e-5
,
weight_decay
=
0.01
,
warmup_proportion
=
0.0
,
lr_scheduler
=
"linear_
warmup_
decay"
,
lr_scheduler
=
"linear_decay"
,
)
config
=
hub
.
RunConfig
(
use_cuda
=
True
,
num_epoch
=
3
,
batch_size
=
32
,
strategy
=
strategy
)
...
...
@@ -124,7 +124,7 @@ hub.finetune_and_eval(task=cls_task, data_reader=reader, feed_list=feed_list, co
`learning_rate`
: Finetune过程中的最大学习率;
`weight_decay`
: 模型的正则项参数,默认0.01,如果模型有过拟合倾向,可适当调高这一参数;
`warmup_proportion`
: 如果warmup_proportion>0, 例如0.1, 则学习率会在前10%的steps中线性增长至最高值learning_rate;
`lr_scheduler`
: 有两种策略可选(1)
`linear_
warmup_
decay`
策略学习率会在最高点后以线性方式衰减;
`noam_decay`
策略学习率会在最高点以多项式形式衰减;
`lr_scheduler`
: 有两种策略可选(1)
`linear_decay`
策略学习率会在最高点后以线性方式衰减;
`noam_decay`
策略学习率会在最高点以多项式形式衰减;
#### 运行配置
`RunConfig`
主要控制Finetune的训练,包含以下可控制的参数:
...
...
demo/text-classification/text_classifier.py
浏览文件 @
b0149dc3
...
...
@@ -78,7 +78,7 @@ if __name__ == '__main__':
strategy
=
hub
.
AdamWeightDecayStrategy
(
weight_decay
=
args
.
weight_decay
,
learning_rate
=
args
.
learning_rate
,
lr_scheduler
=
"linear_
warmup_
decay"
,
lr_scheduler
=
"linear_decay"
,
)
# Setup runing config for PaddleHub Finetune API
...
...
docs/API/Strategy.md
浏览文件 @
b0149dc3
...
...
@@ -3,13 +3,13 @@
----
在PaddleHub中,Strategy代表了在对
[
Task
](
https://github.com/PaddlePaddle/PaddleHub/tree/develop/docs/API/Task.md
)
进行Finetune时,应该使用怎样的策略。这里的策略,包含了对预训练参数使用怎样的学习率,使用哪种类型的优化器,使用什么类型的正则化等
## `class paddlehub.finetune.strategy.AdamWeightDecayStrategy(learning_rate=1e-4, lr_scheduler="linear_
warmup_
decay", warmup_proportion=0.0, weight_decay=0.01, optimizer_name=None)`
## `class paddlehub.finetune.strategy.AdamWeightDecayStrategy(learning_rate=1e-4, lr_scheduler="linear_decay", warmup_proportion=0.0, weight_decay=0.01, optimizer_name=None)`
基于Adam优化器的学习率衰减策略
> ### 参数
> * learning_rate: 全局学习率。默认为1e-4
>
> * lr_scheduler: 学习率调度方法。默认为"linear_
warmup_
decay"
> * lr_scheduler: 学习率调度方法。默认为"linear_decay"
>
> * warmup_proportion: warmup所占比重
>
...
...
paddlehub/finetune/optimization.py
浏览文件 @
b0149dc3
...
...
@@ -27,18 +27,18 @@ def adam_weight_decay_optimization(loss,
learning_rate
,
main_program
,
weight_decay
,
scheduler
=
'linear_
warmup_
decay'
):
scheduler
=
'linear_decay'
):
if
warmup_steps
>
0
:
if
scheduler
==
'noam_decay'
:
scheduled_lr
=
fluid
.
layers
.
learning_rate_scheduler
\
.
noam_decay
(
1
/
(
warmup_steps
*
(
learning_rate
**
2
)),
warmup_steps
)
elif
scheduler
==
'linear_
warmup_
decay'
:
elif
scheduler
==
'linear_decay'
:
scheduled_lr
=
linear_warmup_decay
(
learning_rate
,
warmup_steps
,
num_train_steps
)
else
:
raise
ValueError
(
"Unkown learning rate scheduler, should be "
"'noam_decay' or 'linear_
warmup_
decay'"
)
"'noam_decay' or 'linear_decay'"
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
scheduled_lr
)
else
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
)
...
...
paddlehub/finetune/strategy.py
浏览文件 @
b0149dc3
...
...
@@ -64,14 +64,14 @@ class DefaultStrategy(object):
class
AdamWeightDecayStrategy
(
DefaultStrategy
):
def
__init__
(
self
,
learning_rate
=
1e-4
,
lr_scheduler
=
"linear_
warmup_
decay"
,
lr_scheduler
=
"linear_decay"
,
warmup_proportion
=
0.0
,
weight_decay
=
0.01
,
optimizer_name
=
None
):
super
().
__init__
(
learning_rate
=
learning_rate
,
optimizer_name
=
optimizer_name
)
# check strategy correctness
if
lr_scheduler
not
in
[
"linear_
warmup_
decay"
,
"noam_decay"
]:
if
lr_scheduler
not
in
[
"linear_decay"
,
"noam_decay"
]:
raise
ValueError
(
"lr_scheduler {} is not setup "
"correctly"
.
format
(
lr_scheduler
))
self
.
_lr_scheduler
=
lr_scheduler
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录