提交 b0149dc3 编写于 作者: Z zhangxuefei

Modify the linear_warmup_decay to linear_decay

上级 7bdce56e
......@@ -69,7 +69,7 @@ if __name__ == '__main__':
strategy = hub.AdamWeightDecayStrategy(
weight_decay=args.weight_decay,
learning_rate=args.learning_rate,
lr_scheduler="linear_warmup_decay",
lr_scheduler="linear_decay",
)
# Setup runing config for PaddleHub Finetune API
......
......@@ -111,7 +111,7 @@ strategy = hub.AdamWeightDecayStrategy(
learning_rate=5e-5,
weight_decay=0.01,
warmup_proportion=0.0,
lr_scheduler="linear_warmup_decay",
lr_scheduler="linear_decay",
)
config = hub.RunConfig(use_cuda=True, num_epoch=3, batch_size=32, strategy=strategy)
......@@ -124,7 +124,7 @@ hub.finetune_and_eval(task=cls_task, data_reader=reader, feed_list=feed_list, co
`learning_rate`: Finetune过程中的最大学习率;
`weight_decay`: 模型的正则项参数,默认0.01,如果模型有过拟合倾向,可适当调高这一参数;
`warmup_proportion`: 如果warmup_proportion>0, 例如0.1, 则学习率会在前10%的steps中线性增长至最高值learning_rate;
`lr_scheduler`: 有两种策略可选(1) `linear_warmup_decay`策略学习率会在最高点后以线性方式衰减; `noam_decay`策略学习率会在最高点以多项式形式衰减;
`lr_scheduler`: 有两种策略可选(1) `linear_decay`策略学习率会在最高点后以线性方式衰减; `noam_decay`策略学习率会在最高点以多项式形式衰减;
#### 运行配置
`RunConfig` 主要控制Finetune的训练,包含以下可控制的参数:
......
......@@ -78,7 +78,7 @@ if __name__ == '__main__':
strategy = hub.AdamWeightDecayStrategy(
weight_decay=args.weight_decay,
learning_rate=args.learning_rate,
lr_scheduler="linear_warmup_decay",
lr_scheduler="linear_decay",
)
# Setup runing config for PaddleHub Finetune API
......
......@@ -3,13 +3,13 @@
----
在PaddleHub中,Strategy代表了在对[Task](https://github.com/PaddlePaddle/PaddleHub/tree/develop/docs/API/Task.md)进行Finetune时,应该使用怎样的策略。这里的策略,包含了对预训练参数使用怎样的学习率,使用哪种类型的优化器,使用什么类型的正则化等
## `class paddlehub.finetune.strategy.AdamWeightDecayStrategy(learning_rate=1e-4, lr_scheduler="linear_warmup_decay", warmup_proportion=0.0, weight_decay=0.01, optimizer_name=None)`
## `class paddlehub.finetune.strategy.AdamWeightDecayStrategy(learning_rate=1e-4, lr_scheduler="linear_decay", warmup_proportion=0.0, weight_decay=0.01, optimizer_name=None)`
基于Adam优化器的学习率衰减策略
> ### 参数
> * learning_rate: 全局学习率。默认为1e-4
>
> * lr_scheduler: 学习率调度方法。默认为"linear_warmup_decay"
> * lr_scheduler: 学习率调度方法。默认为"linear_decay"
>
> * warmup_proportion: warmup所占比重
>
......
......@@ -27,18 +27,18 @@ def adam_weight_decay_optimization(loss,
learning_rate,
main_program,
weight_decay,
scheduler='linear_warmup_decay'):
scheduler='linear_decay'):
if warmup_steps > 0:
if scheduler == 'noam_decay':
scheduled_lr = fluid.layers.learning_rate_scheduler\
.noam_decay(1/(warmup_steps *(learning_rate ** 2)),
warmup_steps)
elif scheduler == 'linear_warmup_decay':
elif scheduler == 'linear_decay':
scheduled_lr = linear_warmup_decay(learning_rate, warmup_steps,
num_train_steps)
else:
raise ValueError("Unkown learning rate scheduler, should be "
"'noam_decay' or 'linear_warmup_decay'")
"'noam_decay' or 'linear_decay'")
optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr)
else:
optimizer = fluid.optimizer.Adam(learning_rate=learning_rate)
......
......@@ -64,14 +64,14 @@ class DefaultStrategy(object):
class AdamWeightDecayStrategy(DefaultStrategy):
def __init__(self,
learning_rate=1e-4,
lr_scheduler="linear_warmup_decay",
lr_scheduler="linear_decay",
warmup_proportion=0.0,
weight_decay=0.01,
optimizer_name=None):
super().__init__(
learning_rate=learning_rate, optimizer_name=optimizer_name)
# check strategy correctness
if lr_scheduler not in ["linear_warmup_decay", "noam_decay"]:
if lr_scheduler not in ["linear_decay", "noam_decay"]:
raise ValueError("lr_scheduler {} is not setup "
"correctly".format(lr_scheduler))
self._lr_scheduler = lr_scheduler
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册