提交 acd4eaa3 编写于 作者: G grasswolfs

test=release/v2.1, test=documents_fix

上级 b5de6bc7
......@@ -36,6 +36,7 @@ English | [简体中文](README_ch.md)
- **Cross-platform**: support Linux, Windows, MacOS and other operating systems.
### Recent updates
- **2021.05.12**,Add an open-domain dialogue system, i.e., [plato-mini](https://www.paddlepaddle.org.cn/hubdetail?name=plato-mini&en_category=TextGeneration), to make it easy to build a chatbot in wechat with the help of the wechaty, [See Demo](https://github.com/KPatr1ck/paddlehub-wechaty-demo)
- **2021.04.27:** The v2.1.0 version is released. [1] Add supports for five new models, including two high-precision semantic segmentation models based on VOC dataset and three voice classification models. [2] Enforce the transfer learning capabilities for image semantic segmentation, text semantic matching and voice classification on related datasets. [3] Add the export function APIs for two kinds of model formats, i.,e, ONNX and PaddleInference. [4] Add the support for [BentoML](https://github.com/bentoml/BentoML/), which is a cloud native framework for serving deployment. Users can easily serve pre-trained models from PaddleHub by following the [Tutorial notebooks](https://github.com/PaddlePaddle/PaddleHub/blob/release/v2.1/demo/serving/bentoml/cloud-native-model-serving-with-bentoml.ipynb). Also, see this announcement and [Release note](https://github.com/bentoml/BentoML/releases/tag/v0.12.1) from BentoML. (Many thanks to @[parano](https://github.com/parano) @[cqvu](https://github.com/cqvu) @[deehrlic](https://github.com/deehrlic) for contributing this feature in PaddleHub). [5] The total number of pre-trained models reaches **【300】**.
- **2021.02.18:** The v2.0.0 version is released, making model development and debugging easier, and the finetune task is more flexible and easy to use.The ability to transfer learning for visual tasks is fully upgraded, supporting various tasks such as image classification, image coloring, and style transfer; Transformer models such as BERT, ERNIE, and RoBERTa are upgraded to dynamic graphs, supporting Fine-Tune capabilities for text classification and sequence labeling; Optimize the Serving capability, support multi-card prediction, automatic load balancing, and greatly improve performance; the new automatic data enhancement capability Auto Augment can efficiently search for data enhancement strategy combinations suitable for data sets. 61 new word vector models were added, including 51 Chinese models and 10 English models; add 4 image segmentation models, 2 depth models, 7 image generation models, and 3 text generation models, the total number of pre-trained models reaches **【274】**.
- [【more】](./docs/docs_en/release.md)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册