提交 9ba49968 编写于 作者: K KP

Add ecapa_tdnn_voxceleb.

上级 96cb5498
# ecapa_tdnn_voxceleb
|模型名称|ecapa_tdnn_voxceleb|
| :--- | :---: |
|类别|语音-声纹识别|
|网络|ECAPA-TDNN|
|数据集|VoxCeleb|
|是否支持Fine-tuning|否|
|模型大小|79MB|
|最新更新日期|2021-12-30|
|数据指标|EER 0.69%|
## 一、模型基本信息
### 模型介绍
ecapa_tdnn_voxceleb采用了[ECAPA-TDNN](https://arxiv.org/abs/2005.07143)的模型结构,并在[VoxCeleb](http://www.robots.ox.ac.uk/~vgg/data/voxceleb/)数据集上进行了预训练,在VoxCeleb1的声纹识别测试集([veri_test.txt](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test.txt))上的测试结果为 EER 0.69%,达到了该数据集的SOTA。
<p align="center">
<img src="https://d3i71xaburhd42.cloudfront.net/9609f4817a7e769f5e3e07084db35e46696e82cd/3-Figure2-1.png" hspace='10' height="550"/> <br />
</p>
更多详情请参考
- [VoxCeleb: a large-scale speaker identification dataset](https://www.robots.ox.ac.uk/~vgg/publications/2017/Nagrani17/nagrani17.pdf)
- [ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification](https://arxiv.org/pdf/2005.07143.pdf)
- [The SpeechBrain Toolkit](https://github.com/speechbrain/speechbrain)
## 二、安装
- ### 1、环境依赖
- paddlepaddle >= 2.2.0
- paddlehub >= 2.2.0 | [如何安装PaddleHub](../../../../docs/docs_ch/get_start/installation.rst)
- ### 2、安装
- ```shell
$ hub install ecapa_tdnn_voxceleb
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、预测代码示例
```python
import paddlehub as hub
model = hub.Module(
name='ecapa_tdnn_voxceleb',
threshold=0.25,
version='1.0.0')
# 通过下列链接可下载示例音频
# https://paddlehub.bj.bcebos.com/hub_dev/sv1.wav
# https://paddlehub.bj.bcebos.com/hub_dev/sv2.wav
# Speaker Embedding
embedding = model.speaker_embedding('sv1.wav')
print(embedding.shape)
# (192,)
# Speaker Verification
score, pred = model.speaker_verify('sv1.wav', 'sv2.wav')
print(score, pred)
# [0.16354457], [False]
```
- ### 2、API
- ```python
def speaker_embedding(
wav: os.PathLike,
)
```
- 获取输入音频的声纹特征
- **参数**
- `wav`:输入的说话人的音频文件,格式为`*.wav`。
- **返回**
- 输出纬度为 (192,) 的声纹特征向量。
- ```python
def speaker_verify(
wav1: os.PathLike,
wav2: os.PathLike,
)
```
- 对比两段音频,分别计算其声纹特征的相似度得分,并判断是否为同一说话人。
- **参数**
- `wav1`:输入的说话人1的音频文件,格式为`*.wav`。
- `wav2`:输入的说话人2的音频文件,格式为`*.wav`。
- **返回**
- 返回声纹相似度得分[-1, 1]和预测结果。
## 四、更新历史
* 1.0.0
初始发布
```shell
$ hub install ecapa_tdnn_voxceleb
```
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
def length_to_mask(length, max_len=None, dtype=None):
assert len(length.shape) == 1
if max_len is None:
max_len = length.max().astype('int').item() # using arange to generate mask
mask = paddle.arange(max_len, dtype=length.dtype).expand((len(length), max_len)) < length.unsqueeze(1)
if dtype is None:
dtype = length.dtype
mask = paddle.to_tensor(mask, dtype=dtype)
return mask
class Conv1d(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding="same",
dilation=1,
groups=1,
bias=True,
padding_mode="reflect",
):
super(Conv1d, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.padding = padding
self.padding_mode = padding_mode
self.conv = nn.Conv1D(
in_channels,
out_channels,
self.kernel_size,
stride=self.stride,
padding=0,
dilation=self.dilation,
groups=groups,
bias_attr=bias,
)
def forward(self, x):
if self.padding == "same":
x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride)
else:
raise ValueError("Padding must be 'same'. Got {self.padding}")
return self.conv(x)
def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int):
L_in = x.shape[-1] # Detecting input shape
padding = self._get_padding_elem(L_in, stride, kernel_size, dilation) # Time padding
x = F.pad(x, padding, mode=self.padding_mode, data_format="NCL") # Applying padding
return x
def _get_padding_elem(self, L_in: int, stride: int, kernel_size: int, dilation: int):
if stride > 1:
n_steps = math.ceil(((L_in - kernel_size * dilation) / stride) + 1)
L_out = stride * (n_steps - 1) + kernel_size * dilation
padding = [kernel_size // 2, kernel_size // 2]
else:
L_out = (L_in - dilation * (kernel_size - 1) - 1) // stride + 1
padding = [(L_in - L_out) // 2, (L_in - L_out) // 2]
return padding
class BatchNorm1d(nn.Layer):
def __init__(
self,
input_size,
eps=1e-05,
momentum=0.9,
weight_attr=None,
bias_attr=None,
data_format='NCL',
use_global_stats=None,
):
super(BatchNorm1d, self).__init__()
self.norm = nn.BatchNorm1D(
input_size,
epsilon=eps,
momentum=momentum,
weight_attr=weight_attr,
bias_attr=bias_attr,
data_format=data_format,
use_global_stats=use_global_stats,
)
def forward(self, x):
x_n = self.norm(x)
return x_n
class TDNNBlock(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
dilation,
activation=nn.ReLU,
):
super(TDNNBlock, self).__init__()
self.conv = Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
dilation=dilation,
)
self.activation = activation()
self.norm = BatchNorm1d(input_size=out_channels)
def forward(self, x):
return self.norm(self.activation(self.conv(x)))
class Res2NetBlock(nn.Layer):
def __init__(self, in_channels, out_channels, scale=8, dilation=1):
super(Res2NetBlock, self).__init__()
assert in_channels % scale == 0
assert out_channels % scale == 0
in_channel = in_channels // scale
hidden_channel = out_channels // scale
self.blocks = nn.LayerList(
[TDNNBlock(in_channel, hidden_channel, kernel_size=3, dilation=dilation) for i in range(scale - 1)])
self.scale = scale
def forward(self, x):
y = []
for i, x_i in enumerate(paddle.chunk(x, self.scale, axis=1)):
if i == 0:
y_i = x_i
elif i == 1:
y_i = self.blocks[i - 1](x_i)
else:
y_i = self.blocks[i - 1](x_i + y_i)
y.append(y_i)
y = paddle.concat(y, axis=1)
return y
class SEBlock(nn.Layer):
def __init__(self, in_channels, se_channels, out_channels):
super(SEBlock, self).__init__()
self.conv1 = Conv1d(in_channels=in_channels, out_channels=se_channels, kernel_size=1)
self.relu = paddle.nn.ReLU()
self.conv2 = Conv1d(in_channels=se_channels, out_channels=out_channels, kernel_size=1)
self.sigmoid = paddle.nn.Sigmoid()
def forward(self, x, lengths=None):
L = x.shape[-1]
if lengths is not None:
mask = length_to_mask(lengths * L, max_len=L)
mask = mask.unsqueeze(1)
total = mask.sum(axis=2, keepdim=True)
s = (x * mask).sum(axis=2, keepdim=True) / total
else:
s = x.mean(axis=2, keepdim=True)
s = self.relu(self.conv1(s))
s = self.sigmoid(self.conv2(s))
return s * x
class AttentiveStatisticsPooling(nn.Layer):
def __init__(self, channels, attention_channels=128, global_context=True):
super().__init__()
self.eps = 1e-12
self.global_context = global_context
if global_context:
self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1)
else:
self.tdnn = TDNNBlock(channels, attention_channels, 1, 1)
self.tanh = nn.Tanh()
self.conv = Conv1d(in_channels=attention_channels, out_channels=channels, kernel_size=1)
def forward(self, x, lengths=None):
C, L = x.shape[1], x.shape[2] # KP: (N, C, L)
def _compute_statistics(x, m, axis=2, eps=self.eps):
mean = (m * x).sum(axis)
std = paddle.sqrt((m * (x - mean.unsqueeze(axis)).pow(2)).sum(axis).clip(eps))
return mean, std
if lengths is None:
lengths = paddle.ones([x.shape[0]])
# Make binary mask of shape [N, 1, L]
mask = length_to_mask(lengths * L, max_len=L)
mask = mask.unsqueeze(1)
# Expand the temporal context of the pooling layer by allowing the
# self-attention to look at global properties of the utterance.
if self.global_context:
total = mask.sum(axis=2, keepdim=True).astype('float32')
mean, std = _compute_statistics(x, mask / total)
mean = mean.unsqueeze(2).tile((1, 1, L))
std = std.unsqueeze(2).tile((1, 1, L))
attn = paddle.concat([x, mean, std], axis=1)
else:
attn = x
# Apply layers
attn = self.conv(self.tanh(self.tdnn(attn)))
# Filter out zero-paddings
attn = paddle.where(mask.tile((1, C, 1)) == 0, paddle.ones_like(attn) * float("-inf"), attn)
attn = F.softmax(attn, axis=2)
mean, std = _compute_statistics(x, attn)
# Append mean and std of the batch
pooled_stats = paddle.concat((mean, std), axis=1)
pooled_stats = pooled_stats.unsqueeze(2)
return pooled_stats
class SERes2NetBlock(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
res2net_scale=8,
se_channels=128,
kernel_size=1,
dilation=1,
activation=nn.ReLU,
):
super(SERes2NetBlock, self).__init__()
self.out_channels = out_channels
self.tdnn1 = TDNNBlock(
in_channels,
out_channels,
kernel_size=1,
dilation=1,
activation=activation,
)
self.res2net_block = Res2NetBlock(out_channels, out_channels, res2net_scale, dilation)
self.tdnn2 = TDNNBlock(
out_channels,
out_channels,
kernel_size=1,
dilation=1,
activation=activation,
)
self.se_block = SEBlock(out_channels, se_channels, out_channels)
self.shortcut = None
if in_channels != out_channels:
self.shortcut = Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
)
def forward(self, x, lengths=None):
residual = x
if self.shortcut:
residual = self.shortcut(x)
x = self.tdnn1(x)
x = self.res2net_block(x)
x = self.tdnn2(x)
x = self.se_block(x, lengths)
return x + residual
class ECAPA_TDNN(nn.Layer):
def __init__(
self,
input_size,
lin_neurons=192,
activation=nn.ReLU,
channels=[512, 512, 512, 512, 1536],
kernel_sizes=[5, 3, 3, 3, 1],
dilations=[1, 2, 3, 4, 1],
attention_channels=128,
res2net_scale=8,
se_channels=128,
global_context=True,
):
super(ECAPA_TDNN, self).__init__()
assert len(channels) == len(kernel_sizes)
assert len(channels) == len(dilations)
self.channels = channels
self.blocks = nn.LayerList()
self.emb_size = lin_neurons
# The initial TDNN layer
self.blocks.append(TDNNBlock(
input_size,
channels[0],
kernel_sizes[0],
dilations[0],
activation,
))
# SE-Res2Net layers
for i in range(1, len(channels) - 1):
self.blocks.append(
SERes2NetBlock(
channels[i - 1],
channels[i],
res2net_scale=res2net_scale,
se_channels=se_channels,
kernel_size=kernel_sizes[i],
dilation=dilations[i],
activation=activation,
))
# Multi-layer feature aggregation
self.mfa = TDNNBlock(
channels[-1],
channels[-1],
kernel_sizes[-1],
dilations[-1],
activation,
)
# Attentive Statistical Pooling
self.asp = AttentiveStatisticsPooling(
channels[-1],
attention_channels=attention_channels,
global_context=global_context,
)
self.asp_bn = BatchNorm1d(input_size=channels[-1] * 2)
# Final linear transformation
self.fc = Conv1d(
in_channels=channels[-1] * 2,
out_channels=self.emb_size,
kernel_size=1,
)
def forward(self, x, lengths=None):
xl = []
for layer in self.blocks:
try:
x = layer(x, lengths=lengths)
except TypeError:
x = layer(x)
xl.append(x)
# Multi-layer feature aggregation
x = paddle.concat(xl[1:], axis=1)
x = self.mfa(x)
# Attentive Statistical Pooling
x = self.asp(x, lengths=lengths)
x = self.asp_bn(x)
# Final linear transformation
x = self.fc(x)
return x
import paddle
import paddleaudio
from paddleaudio.features.spectrum import hz_to_mel
from paddleaudio.features.spectrum import mel_to_hz
from paddleaudio.features.spectrum import power_to_db
from paddleaudio.features.spectrum import Spectrogram
from paddleaudio.features.window import get_window
def compute_fbank_matrix(sample_rate: int = 16000,
n_fft: int = 400,
n_mels: int = 80,
f_min: int = 0.0,
f_max: int = 8000.0):
mel = paddle.linspace(hz_to_mel(f_min, htk=True), hz_to_mel(f_max, htk=True), n_mels + 2, dtype=paddle.float32)
hz = mel_to_hz(mel, htk=True)
band = hz[1:] - hz[:-1]
band = band[:-1]
f_central = hz[1:-1]
n_stft = n_fft // 2 + 1
all_freqs = paddle.linspace(0, sample_rate // 2, n_stft)
all_freqs_mat = all_freqs.tile([f_central.shape[0], 1])
f_central_mat = f_central.tile([all_freqs_mat.shape[1], 1]).transpose([1, 0])
band_mat = band.tile([all_freqs_mat.shape[1], 1]).transpose([1, 0])
slope = (all_freqs_mat - f_central_mat) / band_mat
left_side = slope + 1.0
right_side = -slope + 1.0
fbank_matrix = paddle.maximum(paddle.zeros_like(left_side), paddle.minimum(left_side, right_side))
return fbank_matrix
def compute_log_fbank(
x: paddle.Tensor,
sample_rate: int = 16000,
n_fft: int = 400,
hop_length: int = 160,
win_length: int = 400,
n_mels: int = 80,
window: str = 'hamming',
center: bool = True,
pad_mode: str = 'constant',
f_min: float = 0.0,
f_max: float = None,
top_db: float = 80.0,
):
if f_max is None:
f_max = sample_rate / 2
spect = Spectrogram(
n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode)(x)
fbank_matrix = compute_fbank_matrix(
sample_rate=sample_rate,
n_fft=n_fft,
n_mels=n_mels,
f_min=f_min,
f_max=f_max,
)
fbank = paddle.matmul(fbank_matrix, spect)
log_fbank = power_to_db(fbank, top_db=top_db).transpose([0, 2, 1])
return log_fbank
def compute_stats(x: paddle.Tensor, mean_norm: bool = True, std_norm: bool = False, eps: float = 1e-10):
if mean_norm:
current_mean = paddle.mean(x, axis=0)
else:
current_mean = paddle.to_tensor([0.0])
if std_norm:
current_std = paddle.std(x, axis=0)
else:
current_std = paddle.to_tensor([1.0])
current_std = paddle.maximum(current_std, eps * paddle.ones_like(current_std))
return current_mean, current_std
def normalize(
x: paddle.Tensor,
global_mean: paddle.Tensor = None,
global_std: paddle.Tensor = None,
):
for i in range(x.shape[0]): # (B, ...)
if global_mean is None and global_std is None:
mean, std = compute_stats(x[i])
x[i] = (x[i] - mean) / std
else:
x[i] = (x[i] - global_mean) / global_std
return x
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from typing import List
from typing import Union
import numpy as np
import paddle
import paddleaudio
from .ecapa_tdnn import ECAPA_TDNN
from .feature import compute_log_fbank
from .feature import normalize
from paddlehub.module.module import moduleinfo
from paddlehub.utils.log import logger
@moduleinfo(
name="ecapa_tdnn_voxceleb",
version="1.0.0",
summary="",
author="paddlepaddle",
author_email="",
type="audio/speaker_recognition")
class SpeakerRecognition(paddle.nn.Layer):
def __init__(self, threshold=0.25):
super(SpeakerRecognition, self).__init__()
global_stats_path = os.path.join(self.directory, 'assets', 'global_embedding_stats.npy')
ckpt_path = os.path.join(self.directory, 'assets', 'model.pdparams')
self.sr = 16000
self.threshold = threshold
model_conf = {
'input_size': 80,
'channels': [1024, 1024, 1024, 1024, 3072],
'kernel_sizes': [5, 3, 3, 3, 1],
'dilations': [1, 2, 3, 4, 1],
'attention_channels': 128,
'lin_neurons': 192
}
self.model = ECAPA_TDNN(**model_conf)
self.model.set_state_dict(paddle.load(ckpt_path))
self.model.eval()
global_embedding_stats = np.load(global_stats_path, allow_pickle=True)
self.global_emb_mean = paddle.to_tensor(global_embedding_stats.item().get('global_emb_mean'))
self.global_emb_std = paddle.to_tensor(global_embedding_stats.item().get('global_emb_std'))
self.similarity = paddle.nn.CosineSimilarity(axis=-1, eps=1e-6)
def load_audio(self, wav):
wav = os.path.abspath(os.path.expanduser(wav))
assert os.path.isfile(wav), 'Please check wav file: {}'.format(wav)
waveform, _ = paddleaudio.load(wav, sr=self.sr, mono=True, normal=False)
return waveform
def speaker_embedding(self, wav):
waveform = self.load_audio(wav)
embedding = self(paddle.to_tensor(waveform)).reshape([-1])
return embedding.numpy()
def speaker_verify(self, wav1, wav2):
waveform1 = self.load_audio(wav1)
embedding1 = self(paddle.to_tensor(waveform1)).reshape([-1])
waveform2 = self.load_audio(wav2)
embedding2 = self(paddle.to_tensor(waveform2)).reshape([-1])
score = self.similarity(embedding1, embedding2).numpy()
return score, score > self.threshold
def forward(self, x):
if len(x.shape) == 1:
x = x.unsqueeze(0)
fbank = compute_log_fbank(x) # x: waveform tensors with (B, T) shape
norm_fbank = normalize(fbank)
embedding = self.model(norm_fbank.transpose([0, 2, 1])).transpose([0, 2, 1])
norm_embedding = normalize(x=embedding, global_mean=self.global_emb_mean, global_std=self.global_emb_std)
return norm_embedding
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册