Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
9a433ca4
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
283
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9a433ca4
编写于
10月 10, 2019
作者:
Z
Zeyu Chen
提交者:
GitHub
10月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update autofinetune.md
上级
9806a9e6
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
1 addition
and
1 deletion
+1
-1
tutorial/autofinetune.md
tutorial/autofinetune.md
+1
-1
未找到文件。
tutorial/autofinetune.md
浏览文件 @
9a433ca4
...
...
@@ -2,7 +2,7 @@
## 一、简介
目前深度学习模型参数可分类两类:
*
*模型参数(Model Parameters) **
与
**超参数(Hyper Parameters) *
*
,前者是模型通过大量的样本数据进行训练学习得到的参数数据;后者则需要通过人工经验或者不断尝试找到最佳设置(如学习率、dropout_rate、batch_size等),以提高模型训练的效果。如果想得到一个效果好的深度学习神经网络模型,超参的设置非常关键。因为模型参数空间大,目前超参调整都是通过手动,依赖人工经验或者不断尝试,且不同模型、样本数据和场景下不尽相同,所以需要大量尝试,时间成本和资源成本非常浪费。PaddleHub Auto Fine-tune可以实现自动调整超参数。
目前深度学习模型参数可分类两类:
*
模型参数 (Model Parameters)*
与
*超参数 (Hyper Parameters)
*
,前者是模型通过大量的样本数据进行训练学习得到的参数数据;后者则需要通过人工经验或者不断尝试找到最佳设置(如学习率、dropout_rate、batch_size等),以提高模型训练的效果。如果想得到一个效果好的深度学习神经网络模型,超参的设置非常关键。因为模型参数空间大,目前超参调整都是通过手动,依赖人工经验或者不断尝试,且不同模型、样本数据和场景下不尽相同,所以需要大量尝试,时间成本和资源成本非常浪费。PaddleHub Auto Fine-tune可以实现自动调整超参数。
PaddleHub Auto Fine-tune提供两种超参优化策略:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录