Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
9a210a9e
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
283
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9a210a9e
编写于
9月 22, 2020
作者:
H
haoyuying
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove darknet
上级
5148424a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
140 addition
and
147 deletion
+140
-147
hub_module/modules/image/object_detection/yolov3_darknet53_pascalvoc/darknet.py
...ge/object_detection/yolov3_darknet53_pascalvoc/darknet.py
+0
-144
hub_module/modules/image/object_detection/yolov3_darknet53_pascalvoc/module.py
...age/object_detection/yolov3_darknet53_pascalvoc/module.py
+138
-3
paddlehub/module/cv_module.py
paddlehub/module/cv_module.py
+2
-0
未找到文件。
hub_module/modules/image/object_detection/yolov3_darknet53_pascalvoc/darknet.py
已删除
100644 → 0
浏览文件 @
5148424a
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.regularizer
import
L2Decay
from
paddle.nn.initializer
import
Normal
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic block for Darknet"""
def
__init__
(
self
,
ch_in
:
int
,
ch_out
:
int
,
filter_size
:
int
=
3
,
stride
:
int
=
1
,
groups
:
int
=
1
,
padding
:
int
=
0
,
act
:
str
=
'leakly'
,
is_test
:
bool
=
False
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
conv
=
nn
.
Conv2d
(
ch_in
,
ch_out
,
filter_size
,
padding
=
padding
,
stride
=
stride
,
groups
=
groups
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
Normal
(
0.
,
0.02
)),
bias_attr
=
False
)
self
.
batch_norm
=
nn
.
BatchNorm
(
num_channels
=
ch_out
,
is_test
=
is_test
,
param_attr
=
paddle
.
ParamAttr
(
initializer
=
Normal
(
0.
,
0.02
),
regularizer
=
L2Decay
(
0.
)))
self
.
act
=
act
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
out
=
self
.
conv
(
inputs
)
out
=
self
.
batch_norm
(
out
)
if
self
.
act
==
"leakly"
:
out
=
F
.
leaky_relu
(
x
=
out
,
negative_slope
=
0.1
)
return
out
class
DownSample
(
nn
.
Layer
):
"""Downsample block for Darknet"""
def
__init__
(
self
,
ch_in
:
int
,
ch_out
:
int
,
filter_size
:
int
=
3
,
stride
:
int
=
2
,
padding
:
int
=
1
,
is_test
:
bool
=
False
):
super
(
DownSample
,
self
).
__init__
()
self
.
conv_bn_layer
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
is_test
=
is_test
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
out
=
self
.
conv_bn_layer
(
inputs
)
return
out
class
BasicBlock
(
nn
.
Layer
):
"""Basic residual block for Darknet"""
def
__init__
(
self
,
ch_in
:
int
,
ch_out
:
int
,
is_test
:
bool
=
False
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
conv1
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
)
self
.
conv2
=
ConvBNLayer
(
ch_in
=
ch_out
,
ch_out
=
ch_out
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
conv1
=
self
.
conv1
(
inputs
)
conv2
=
self
.
conv2
(
conv1
)
out
=
paddle
.
elementwise_add
(
x
=
inputs
,
y
=
conv2
,
act
=
None
)
return
out
class
LayerWarp
(
nn
.
Layer
):
"""Warp layer composed by basic residual blocks"""
def
__init__
(
self
,
ch_in
:
int
,
ch_out
:
int
,
count
:
int
,
is_test
:
bool
=
False
):
super
(
LayerWarp
,
self
).
__init__
()
self
.
basicblock0
=
BasicBlock
(
ch_in
,
ch_out
,
is_test
=
is_test
)
self
.
res_out_list
=
[]
for
i
in
range
(
1
,
count
):
res_out
=
self
.
add_sublayer
(
"basic_block_%d"
%
(
i
),
BasicBlock
(
ch_out
*
2
,
ch_out
,
is_test
=
is_test
))
self
.
res_out_list
.
append
(
res_out
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
y
=
self
.
basicblock0
(
inputs
)
for
basic_block_i
in
self
.
res_out_list
:
y
=
basic_block_i
(
y
)
return
y
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
])}
class
DarkNet53_conv_body
(
nn
.
Layer
):
"""Darknet53
Args:
ch_in(int): Input channels, default is 3.
is_test (bool): Set the test mode, default is True.
"""
def
__init__
(
self
,
ch_in
:
int
=
3
,
is_test
:
bool
=
False
):
super
(
DarkNet53_conv_body
,
self
).
__init__
()
self
.
stages
=
DarkNet_cfg
[
53
]
self
.
stages
=
self
.
stages
[
0
:
5
]
self
.
conv0
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
)
self
.
downsample0
=
DownSample
(
ch_in
=
32
,
ch_out
=
32
*
2
,
is_test
=
is_test
)
self
.
darknet53_conv_block_list
=
[]
self
.
downsample_list
=
[]
ch_in
=
[
64
,
128
,
256
,
512
,
1024
]
for
i
,
stage
in
enumerate
(
self
.
stages
):
conv_block
=
self
.
add_sublayer
(
"stage_%d"
%
(
i
),
LayerWarp
(
int
(
ch_in
[
i
]),
32
*
(
2
**
i
),
stage
,
is_test
=
is_test
))
self
.
darknet53_conv_block_list
.
append
(
conv_block
)
for
i
in
range
(
len
(
self
.
stages
)
-
1
):
downsample
=
self
.
add_sublayer
(
"stage_%d_downsample"
%
i
,
DownSample
(
ch_in
=
32
*
(
2
**
(
i
+
1
)),
ch_out
=
32
*
(
2
**
(
i
+
2
)),
is_test
=
is_test
))
self
.
downsample_list
.
append
(
downsample
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
out
=
self
.
conv0
(
inputs
)
out
=
self
.
downsample0
(
out
)
blocks
=
[]
for
i
,
conv_block_i
in
enumerate
(
self
.
darknet53_conv_block_list
):
out
=
conv_block_i
(
out
)
blocks
.
append
(
out
)
if
i
<
len
(
self
.
stages
)
-
1
:
out
=
self
.
downsample_list
[
i
](
out
)
return
blocks
[
-
1
:
-
4
:
-
1
]
hub_module/modules/image/object_detection/yolov3_darknet53_pascalvoc/module.py
浏览文件 @
9a210a9e
...
...
@@ -6,14 +6,149 @@ import paddle.nn.functional as F
from
paddle.nn.initializer
import
Normal
,
Constant
from
paddle.regularizer
import
L2Decay
from
pycocotools.coco
import
COCO
from
darknet
import
DarkNet53_conv_body
from
darknet
import
ConvBNLayer
from
paddlehub.module.cv_module
import
Yolov3Module
from
paddlehub.process.transforms
import
DetectTrainReader
,
DetectTestReader
from
paddlehub.module.module
import
moduleinfo
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic block for Darknet"""
def
__init__
(
self
,
ch_in
:
int
,
ch_out
:
int
,
filter_size
:
int
=
3
,
stride
:
int
=
1
,
groups
:
int
=
1
,
padding
:
int
=
0
,
act
:
str
=
'leakly'
,
is_test
:
bool
=
False
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
conv
=
nn
.
Conv2d
(
ch_in
,
ch_out
,
filter_size
,
padding
=
padding
,
stride
=
stride
,
groups
=
groups
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
Normal
(
0.
,
0.02
)),
bias_attr
=
False
)
self
.
batch_norm
=
nn
.
BatchNorm
(
num_channels
=
ch_out
,
is_test
=
is_test
,
param_attr
=
paddle
.
ParamAttr
(
initializer
=
Normal
(
0.
,
0.02
),
regularizer
=
L2Decay
(
0.
)))
self
.
act
=
act
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
out
=
self
.
conv
(
inputs
)
out
=
self
.
batch_norm
(
out
)
if
self
.
act
==
"leakly"
:
out
=
F
.
leaky_relu
(
x
=
out
,
negative_slope
=
0.1
)
return
out
class
DownSample
(
nn
.
Layer
):
"""Downsample block for Darknet"""
def
__init__
(
self
,
ch_in
:
int
,
ch_out
:
int
,
filter_size
:
int
=
3
,
stride
:
int
=
2
,
padding
:
int
=
1
,
is_test
:
bool
=
False
):
super
(
DownSample
,
self
).
__init__
()
self
.
conv_bn_layer
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
is_test
=
is_test
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
out
=
self
.
conv_bn_layer
(
inputs
)
return
out
class
BasicBlock
(
nn
.
Layer
):
"""Basic residual block for Darknet"""
def
__init__
(
self
,
ch_in
:
int
,
ch_out
:
int
,
is_test
:
bool
=
False
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
conv1
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
)
self
.
conv2
=
ConvBNLayer
(
ch_in
=
ch_out
,
ch_out
=
ch_out
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
conv1
=
self
.
conv1
(
inputs
)
conv2
=
self
.
conv2
(
conv1
)
out
=
paddle
.
elementwise_add
(
x
=
inputs
,
y
=
conv2
,
act
=
None
)
return
out
class
LayerWarp
(
nn
.
Layer
):
"""Warp layer composed by basic residual blocks"""
def
__init__
(
self
,
ch_in
:
int
,
ch_out
:
int
,
count
:
int
,
is_test
:
bool
=
False
):
super
(
LayerWarp
,
self
).
__init__
()
self
.
basicblock0
=
BasicBlock
(
ch_in
,
ch_out
,
is_test
=
is_test
)
self
.
res_out_list
=
[]
for
i
in
range
(
1
,
count
):
res_out
=
self
.
add_sublayer
(
"basic_block_%d"
%
(
i
),
BasicBlock
(
ch_out
*
2
,
ch_out
,
is_test
=
is_test
))
self
.
res_out_list
.
append
(
res_out
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
y
=
self
.
basicblock0
(
inputs
)
for
basic_block_i
in
self
.
res_out_list
:
y
=
basic_block_i
(
y
)
return
y
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
])}
class
DarkNet53_conv_body
(
nn
.
Layer
):
"""Darknet53
Args:
ch_in(int): Input channels, default is 3.
is_test (bool): Set the test mode, default is True.
"""
def
__init__
(
self
,
ch_in
:
int
=
3
,
is_test
:
bool
=
False
):
super
(
DarkNet53_conv_body
,
self
).
__init__
()
self
.
stages
=
DarkNet_cfg
[
53
]
self
.
stages
=
self
.
stages
[
0
:
5
]
self
.
conv0
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
)
self
.
downsample0
=
DownSample
(
ch_in
=
32
,
ch_out
=
32
*
2
,
is_test
=
is_test
)
self
.
darknet53_conv_block_list
=
[]
self
.
downsample_list
=
[]
ch_in
=
[
64
,
128
,
256
,
512
,
1024
]
for
i
,
stage
in
enumerate
(
self
.
stages
):
conv_block
=
self
.
add_sublayer
(
"stage_%d"
%
(
i
),
LayerWarp
(
int
(
ch_in
[
i
]),
32
*
(
2
**
i
),
stage
,
is_test
=
is_test
))
self
.
darknet53_conv_block_list
.
append
(
conv_block
)
for
i
in
range
(
len
(
self
.
stages
)
-
1
):
downsample
=
self
.
add_sublayer
(
"stage_%d_downsample"
%
i
,
DownSample
(
ch_in
=
32
*
(
2
**
(
i
+
1
)),
ch_out
=
32
*
(
2
**
(
i
+
2
)),
is_test
=
is_test
))
self
.
downsample_list
.
append
(
downsample
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
out
=
self
.
conv0
(
inputs
)
out
=
self
.
downsample0
(
out
)
blocks
=
[]
for
i
,
conv_block_i
in
enumerate
(
self
.
darknet53_conv_block_list
):
out
=
conv_block_i
(
out
)
blocks
.
append
(
out
)
if
i
<
len
(
self
.
stages
)
-
1
:
out
=
self
.
downsample_list
[
i
](
out
)
return
blocks
[
-
1
:
-
4
:
-
1
]
class
YoloDetectionBlock
(
nn
.
Layer
):
"""Basic block for Yolov3"""
def
__init__
(
self
,
ch_in
:
int
,
channel
:
int
,
is_test
:
bool
=
True
):
...
...
paddlehub/module/cv_module.py
浏览文件 @
9a210a9e
...
...
@@ -286,6 +286,8 @@ class Yolov3Module(RunModule, ImageServing):
boxes
=
bboxes
[:,
2
:].
astype
(
'float32'
)
if
visualization
:
if
not
os
.
path
.
exists
(
save_path
):
os
.
mkdir
(
save_path
)
boxtool
.
draw_boxes_on_image
(
imgpath
,
boxes
,
scores
,
labels
,
label_names
,
0.5
)
return
boxes
,
scores
,
labels
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录