提交 9a210a9e 编写于 作者: H haoyuying

remove darknet

上级 5148424a
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Normal
class ConvBNLayer(nn.Layer):
"""Basic block for Darknet"""
def __init__(self,
ch_in: int,
ch_out: int,
filter_size: int = 3,
stride: int = 1,
groups: int = 1,
padding: int = 0,
act: str = 'leakly',
is_test: bool = False):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2d(ch_in,
ch_out,
filter_size,
padding=padding,
stride=stride,
groups=groups,
weight_attr=paddle.ParamAttr(initializer=Normal(0., 0.02)),
bias_attr=False)
self.batch_norm = nn.BatchNorm(num_channels=ch_out,
is_test=is_test,
param_attr=paddle.ParamAttr(initializer=Normal(0., 0.02),
regularizer=L2Decay(0.)))
self.act = act
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
out = self.conv(inputs)
out = self.batch_norm(out)
if self.act == "leakly":
out = F.leaky_relu(x=out, negative_slope=0.1)
return out
class DownSample(nn.Layer):
"""Downsample block for Darknet"""
def __init__(self,
ch_in: int,
ch_out: int,
filter_size: int = 3,
stride: int = 2,
padding: int = 1,
is_test: bool = False):
super(DownSample, self).__init__()
self.conv_bn_layer = ConvBNLayer(ch_in=ch_in,
ch_out=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
is_test=is_test)
self.ch_out = ch_out
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
out = self.conv_bn_layer(inputs)
return out
class BasicBlock(nn.Layer):
"""Basic residual block for Darknet"""
def __init__(self, ch_in: int, ch_out: int, is_test: bool = False):
super(BasicBlock, self).__init__()
self.conv1 = ConvBNLayer(ch_in=ch_in, ch_out=ch_out, filter_size=1, stride=1, padding=0, is_test=is_test)
self.conv2 = ConvBNLayer(ch_in=ch_out, ch_out=ch_out * 2, filter_size=3, stride=1, padding=1, is_test=is_test)
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
conv1 = self.conv1(inputs)
conv2 = self.conv2(conv1)
out = paddle.elementwise_add(x=inputs, y=conv2, act=None)
return out
class LayerWarp(nn.Layer):
"""Warp layer composed by basic residual blocks"""
def __init__(self, ch_in: int, ch_out: int, count: int, is_test: bool = False):
super(LayerWarp, self).__init__()
self.basicblock0 = BasicBlock(ch_in, ch_out, is_test=is_test)
self.res_out_list = []
for i in range(1, count):
res_out = self.add_sublayer("basic_block_%d" % (i), BasicBlock(ch_out * 2, ch_out, is_test=is_test))
self.res_out_list.append(res_out)
self.ch_out = ch_out
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
y = self.basicblock0(inputs)
for basic_block_i in self.res_out_list:
y = basic_block_i(y)
return y
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
class DarkNet53_conv_body(nn.Layer):
"""Darknet53
Args:
ch_in(int): Input channels, default is 3.
is_test (bool): Set the test mode, default is True.
"""
def __init__(self, ch_in: int = 3, is_test: bool = False):
super(DarkNet53_conv_body, self).__init__()
self.stages = DarkNet_cfg[53]
self.stages = self.stages[0:5]
self.conv0 = ConvBNLayer(ch_in=ch_in, ch_out=32, filter_size=3, stride=1, padding=1, is_test=is_test)
self.downsample0 = DownSample(ch_in=32, ch_out=32 * 2, is_test=is_test)
self.darknet53_conv_block_list = []
self.downsample_list = []
ch_in = [64, 128, 256, 512, 1024]
for i, stage in enumerate(self.stages):
conv_block = self.add_sublayer("stage_%d" % (i),
LayerWarp(int(ch_in[i]), 32 * (2**i), stage, is_test=is_test))
self.darknet53_conv_block_list.append(conv_block)
for i in range(len(self.stages) - 1):
downsample = self.add_sublayer(
"stage_%d_downsample" % i, DownSample(ch_in=32 * (2**(i + 1)),
ch_out=32 * (2**(i + 2)),
is_test=is_test))
self.downsample_list.append(downsample)
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
out = self.conv0(inputs)
out = self.downsample0(out)
blocks = []
for i, conv_block_i in enumerate(self.darknet53_conv_block_list):
out = conv_block_i(out)
blocks.append(out)
if i < len(self.stages) - 1:
out = self.downsample_list[i](out)
return blocks[-1:-4:-1]
......@@ -6,14 +6,149 @@ import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from paddle.regularizer import L2Decay
from pycocotools.coco import COCO
from darknet import DarkNet53_conv_body
from darknet import ConvBNLayer
from paddlehub.module.cv_module import Yolov3Module
from paddlehub.process.transforms import DetectTrainReader, DetectTestReader
from paddlehub.module.module import moduleinfo
class ConvBNLayer(nn.Layer):
"""Basic block for Darknet"""
def __init__(self,
ch_in: int,
ch_out: int,
filter_size: int = 3,
stride: int = 1,
groups: int = 1,
padding: int = 0,
act: str = 'leakly',
is_test: bool = False):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2d(ch_in,
ch_out,
filter_size,
padding=padding,
stride=stride,
groups=groups,
weight_attr=paddle.ParamAttr(initializer=Normal(0., 0.02)),
bias_attr=False)
self.batch_norm = nn.BatchNorm(num_channels=ch_out,
is_test=is_test,
param_attr=paddle.ParamAttr(initializer=Normal(0., 0.02),
regularizer=L2Decay(0.)))
self.act = act
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
out = self.conv(inputs)
out = self.batch_norm(out)
if self.act == "leakly":
out = F.leaky_relu(x=out, negative_slope=0.1)
return out
class DownSample(nn.Layer):
"""Downsample block for Darknet"""
def __init__(self,
ch_in: int,
ch_out: int,
filter_size: int = 3,
stride: int = 2,
padding: int = 1,
is_test: bool = False):
super(DownSample, self).__init__()
self.conv_bn_layer = ConvBNLayer(ch_in=ch_in,
ch_out=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
is_test=is_test)
self.ch_out = ch_out
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
out = self.conv_bn_layer(inputs)
return out
class BasicBlock(nn.Layer):
"""Basic residual block for Darknet"""
def __init__(self, ch_in: int, ch_out: int, is_test: bool = False):
super(BasicBlock, self).__init__()
self.conv1 = ConvBNLayer(ch_in=ch_in, ch_out=ch_out, filter_size=1, stride=1, padding=0, is_test=is_test)
self.conv2 = ConvBNLayer(ch_in=ch_out, ch_out=ch_out * 2, filter_size=3, stride=1, padding=1, is_test=is_test)
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
conv1 = self.conv1(inputs)
conv2 = self.conv2(conv1)
out = paddle.elementwise_add(x=inputs, y=conv2, act=None)
return out
class LayerWarp(nn.Layer):
"""Warp layer composed by basic residual blocks"""
def __init__(self, ch_in: int, ch_out: int, count: int, is_test: bool = False):
super(LayerWarp, self).__init__()
self.basicblock0 = BasicBlock(ch_in, ch_out, is_test=is_test)
self.res_out_list = []
for i in range(1, count):
res_out = self.add_sublayer("basic_block_%d" % (i), BasicBlock(ch_out * 2, ch_out, is_test=is_test))
self.res_out_list.append(res_out)
self.ch_out = ch_out
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
y = self.basicblock0(inputs)
for basic_block_i in self.res_out_list:
y = basic_block_i(y)
return y
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
class DarkNet53_conv_body(nn.Layer):
"""Darknet53
Args:
ch_in(int): Input channels, default is 3.
is_test (bool): Set the test mode, default is True.
"""
def __init__(self, ch_in: int = 3, is_test: bool = False):
super(DarkNet53_conv_body, self).__init__()
self.stages = DarkNet_cfg[53]
self.stages = self.stages[0:5]
self.conv0 = ConvBNLayer(ch_in=ch_in, ch_out=32, filter_size=3, stride=1, padding=1, is_test=is_test)
self.downsample0 = DownSample(ch_in=32, ch_out=32 * 2, is_test=is_test)
self.darknet53_conv_block_list = []
self.downsample_list = []
ch_in = [64, 128, 256, 512, 1024]
for i, stage in enumerate(self.stages):
conv_block = self.add_sublayer("stage_%d" % (i),
LayerWarp(int(ch_in[i]), 32 * (2**i), stage, is_test=is_test))
self.darknet53_conv_block_list.append(conv_block)
for i in range(len(self.stages) - 1):
downsample = self.add_sublayer(
"stage_%d_downsample" % i, DownSample(ch_in=32 * (2**(i + 1)),
ch_out=32 * (2**(i + 2)),
is_test=is_test))
self.downsample_list.append(downsample)
def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
out = self.conv0(inputs)
out = self.downsample0(out)
blocks = []
for i, conv_block_i in enumerate(self.darknet53_conv_block_list):
out = conv_block_i(out)
blocks.append(out)
if i < len(self.stages) - 1:
out = self.downsample_list[i](out)
return blocks[-1:-4:-1]
class YoloDetectionBlock(nn.Layer):
"""Basic block for Yolov3"""
def __init__(self, ch_in: int, channel: int, is_test: bool = True):
......
......@@ -286,6 +286,8 @@ class Yolov3Module(RunModule, ImageServing):
boxes = bboxes[:, 2:].astype('float32')
if visualization:
if not os.path.exists(save_path):
os.mkdir(save_path)
boxtool.draw_boxes_on_image(imgpath, boxes, scores, labels, label_names, 0.5)
return boxes, scores, labels
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册