Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
99548331
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
284
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
99548331
编写于
10月 14, 2020
作者:
W
wuzewu
提交者:
GitHub
10月 14, 2020
浏览文件
操作
浏览文件
下载
差异文件
update mobilenet_v2_imagenet_ssld
上级
69788b6d
763d6d5a
变更
7
展开全部
隐藏空白更改
内联
并排
Showing
7 changed file
with
207 addition
and
1805 deletion
+207
-1805
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/README.md
...image/classification/mobilenet_v2_imagenet_ssld/README.md
+0
-159
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/__init__.py
...age/classification/mobilenet_v2_imagenet_ssld/__init__.py
+0
-0
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/data_feed.py
...ge/classification/mobilenet_v2_imagenet_ssld/data_feed.py
+0
-84
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/label_list.txt
.../classification/mobilenet_v2_imagenet_ssld/label_list.txt
+0
-1000
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/mobilenet_v2.py
...classification/mobilenet_v2_imagenet_ssld/mobilenet_v2.py
+0
-231
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py
...image/classification/mobilenet_v2_imagenet_ssld/module.py
+207
-276
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/processor.py
...ge/classification/mobilenet_v2_imagenet_ssld/processor.py
+0
-55
未找到文件。
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/README.md
已删除
100644 → 0
浏览文件 @
69788b6d
```
shell
$
hub
install
mobilenet_v2_imagenet_ssld
==
1.0.0
```
<p
align=
"center"
>
<img
src=
"http://bj.bcebos.com/ibox-thumbnail98/e7b22762cf42ab0e1e1fab6b8720938b?authorization=bce-auth-v1%2Ffbe74140929444858491fbf2b6bc0935%2F2020-04-08T11%3A49%3A16Z%2F1800%2F%2Faf385f56da3c8ee1298588939d93533a72203c079ae1187affa2da555b9898ea"
hspace=
'5'
width=
800/
>
<br
/>
MobileNet 系列的网络结构
</p>
模型的详情可参考
[
论文
](
https://arxiv.org/pdf/1801.04381.pdf
)
## 命令行预测
```
hub run mobilenet_v2_imagenet_ssld --input_path "/PATH/TO/IMAGE"
```
## API
```
python
def
get_expected_image_width
()
```
返回预处理的图片宽度,也就是224。
```
python
def
get_expected_image_height
()
```
返回预处理的图片高度,也就是224。
```
python
def
get_pretrained_images_mean
()
```
返回预处理的图片均值,也就是
\[
0.485, 0.456, 0.406
\]
。
```
python
def
get_pretrained_images_std
()
```
返回预处理的图片标准差,也就是
\[
0.229, 0.224, 0.225
\]
。
```
python
def
context
(
trainable
=
True
,
pretrained
=
True
)
```
**参数**
*
trainable (bool): 计算图的参数是否为可训练的;
*
pretrained (bool): 是否加载默认的预训练模型。
**返回**
*
inputs (dict): 计算图的输入,key 为 'image', value 为图片的张量;
*
outputs (dict): 计算图的输出,key 为 'classification' 和 'feature_map',其相应的值为:
*
classification (paddle.fluid.framework.Variable): 分类结果,也就是全连接层的输出;
*
feature
\_
map (paddle.fluid.framework.Variable): 特征匹配,全连接层前面的那个张量。
*
context
\_
prog(fluid.Program): 计算图,用于迁移学习。
```
python
def
classification
(
images
=
None
,
paths
=
None
,
batch_size
=
1
,
use_gpu
=
False
,
top_k
=
1
):
```
**参数**
*
images (list
\[
numpy.ndarray
\]
): 图片数据,每一个图片数据的shape 均为
\[
H, W, C
\]
,颜色空间为 BGR;
*
paths (list
\[
str
\]
): 图片的路径;
*
batch
\_
size (int): batch 的大小;
*
use
\_
gpu (bool): 是否使用 GPU 来预测;
*
top
\_
k (int): 返回预测结果的前 k 个。
**返回**
res (list
\[
dict
\]
): 分类结果,列表的每一个元素均为字典,其中 key 为识别动物的类别,value为置信度。
```
python
def
save_inference_model
(
dirname
,
model_filename
=
None
,
params_filename
=
None
,
combined
=
True
)
```
将模型保存到指定路径。
**参数**
*
dirname: 存在模型的目录名称
*
model_filename: 模型文件名称,默认为
\_\_
model
\_\_
*
params_filename: 参数文件名称,默认为
\_\_
params
\_\_
(仅当
`combined`
为True时生效)
*
combined: 是否将参数保存到统一的一个文件中
## 代码示例
```
python
import
paddlehub
as
hub
import
cv2
classifier
=
hub
.
Module
(
name
=
"mobilenet_v2_imagenet_ssld"
)
result
=
classifier
.
classification
(
images
=
[
cv2
.
imread
(
'/PATH/TO/IMAGE'
)])
# or
# result = classifier.classification(paths=['/PATH/TO/IMAGE'])
```
## 服务部署
PaddleHub Serving可以部署一个在线动物识别服务。
## 第一步:启动PaddleHub Serving
运行启动命令:
```
shell
$
hub serving start
-m
mobilenet_v2_imagenet_ssld
```
这样就完成了一个在线动物识别服务化API的部署,默认端口号为8866。
**NOTE:**
如使用GPU预测,则需要在启动服务之前,请设置CUDA
\_
VISIBLE
\_
DEVICES环境变量,否则不用设置。
## 第二步:发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```
python
import
requests
import
json
import
cv2
import
base64
def
cv2_to_base64
(
image
):
data
=
cv2
.
imencode
(
'.jpg'
,
image
)[
1
]
return
base64
.
b64encode
(
data
.
tostring
()).
decode
(
'utf8'
)
# 发送HTTP请求
data
=
{
'images'
:[
cv2_to_base64
(
cv2
.
imread
(
"/PATH/TO/IMAGE"
))]}
headers
=
{
"Content-type"
:
"application/json"
}
url
=
"http://127.0.0.1:8866/predict/mobilenet_v2_imagenet_ssld"
r
=
requests
.
post
(
url
=
url
,
headers
=
headers
,
data
=
json
.
dumps
(
data
))
# 打印预测结果
print
(
r
.
json
()[
"results"
])
```
### 查看代码
[
PaddleClas
](
https://github.com/PaddlePaddle/PaddleClas
)
### 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/__init__.py
已删除
100644 → 0
浏览文件 @
69788b6d
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/data_feed.py
已删除
100644 → 0
浏览文件 @
69788b6d
# coding=utf-8
import
os
import
time
from
collections
import
OrderedDict
import
cv2
import
numpy
as
np
from
PIL
import
Image
__all__
=
[
'reader'
]
DATA_DIM
=
224
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
h_start
=
(
height
-
size
)
/
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
process_image
(
img
):
img
=
resize_short
(
img
,
target_size
=
256
)
img
=
crop_image
(
img
,
target_size
=
DATA_DIM
,
center
=
True
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img
-=
img_mean
img
/=
img_std
return
img
def
reader
(
images
=
None
,
paths
=
None
):
"""
Preprocess to yield image.
Args:
images (list[numpy.ndarray]): images data, shape of each is [H, W, C].
paths (list[str]): paths to images.
Yield:
each (collections.OrderedDict): info of original image, preprocessed image.
"""
component
=
list
()
if
paths
:
for
im_path
in
paths
:
each
=
OrderedDict
()
assert
os
.
path
.
isfile
(
im_path
),
"The {} isn't a valid file path."
.
format
(
im_path
)
each
[
'org_im_path'
]
=
im_path
each
[
'org_im'
]
=
Image
.
open
(
im_path
)
each
[
'org_im_width'
],
each
[
'org_im_height'
]
=
each
[
'org_im'
].
size
component
.
append
(
each
)
if
images
is
not
None
:
assert
type
(
images
),
"images is a list."
for
im
in
images
:
each
=
OrderedDict
()
each
[
'org_im'
]
=
Image
.
fromarray
(
im
[:,
:,
::
-
1
])
each
[
'org_im_path'
]
=
'ndarray_time={}'
.
format
(
round
(
time
.
time
(),
6
)
*
1e6
)
each
[
'org_im_width'
],
each
[
'org_im_height'
]
=
each
[
'org_im'
].
size
component
.
append
(
each
)
for
element
in
component
:
element
[
'image'
]
=
process_image
(
element
[
'org_im'
])
yield
element
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/label_list.txt
已删除
100644 → 0
浏览文件 @
69788b6d
此差异已折叠。
点击以展开。
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/mobilenet_v2.py
已删除
100644 → 0
浏览文件 @
69788b6d
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
'MobileNetV2_x0_25'
,
'MobileNetV2_x0_5'
,
'MobileNetV2_x0_75'
,
'MobileNetV2_x1_0'
,
'MobileNetV2_x1_5'
,
'MobileNetV2_x2_0'
,
'MobileNetV2'
]
class
MobileNetV2
():
def
__init__
(
self
,
scale
=
1.0
):
self
.
scale
=
scale
def
net
(
self
,
input
,
class_dim
=
1000
):
scale
=
self
.
scale
bottleneck_params_list
=
[
(
1
,
16
,
1
,
1
),
(
6
,
24
,
2
,
2
),
(
6
,
32
,
3
,
2
),
(
6
,
64
,
4
,
2
),
(
6
,
96
,
3
,
1
),
(
6
,
160
,
3
,
2
),
(
6
,
320
,
1
,
1
),
]
#conv1
input
=
self
.
conv_bn_layer
(
input
,
num_filters
=
int
(
32
*
scale
),
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
if_act
=
True
,
name
=
'conv1_1'
)
# bottleneck sequences
i
=
1
in_c
=
int
(
32
*
scale
)
for
layer_setting
in
bottleneck_params_list
:
t
,
c
,
n
,
s
=
layer_setting
i
+=
1
input
=
self
.
invresi_blocks
(
input
=
input
,
in_c
=
in_c
,
t
=
t
,
c
=
int
(
c
*
scale
),
n
=
n
,
s
=
s
,
name
=
'conv'
+
str
(
i
))
in_c
=
int
(
c
*
scale
)
#last_conv
input
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
int
(
1280
*
scale
)
if
scale
>
1.0
else
1280
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
name
=
'conv9'
)
input
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_type
=
'avg'
,
global_pooling
=
True
)
output
=
fluid
.
layers
.
fc
(
input
=
input
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
name
=
'fc10_weights'
),
bias_attr
=
ParamAttr
(
name
=
'fc10_offset'
))
return
output
,
input
def
conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
channels
=
None
,
num_groups
=
1
,
if_act
=
True
,
name
=
None
,
use_cudnn
=
True
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
ParamAttr
(
name
=
name
+
'_weights'
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
return
fluid
.
layers
.
relu6
(
bn
)
else
:
return
bn
def
shortcut
(
self
,
input
,
data_residual
):
return
fluid
.
layers
.
elementwise_add
(
input
,
data_residual
)
def
inverted_residual_unit
(
self
,
input
,
num_in_filter
,
num_filters
,
ifshortcut
,
stride
,
filter_size
,
padding
,
expansion_factor
,
name
=
None
):
num_expfilter
=
int
(
round
(
num_in_filter
*
expansion_factor
))
channel_expand
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_expfilter
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
True
,
name
=
name
+
'_expand'
)
bottleneck_conv
=
self
.
conv_bn_layer
(
input
=
channel_expand
,
num_filters
=
num_expfilter
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
num_groups
=
num_expfilter
,
if_act
=
True
,
name
=
name
+
'_dwise'
,
use_cudnn
=
False
)
linear_out
=
self
.
conv_bn_layer
(
input
=
bottleneck_conv
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
False
,
name
=
name
+
'_linear'
)
if
ifshortcut
:
out
=
self
.
shortcut
(
input
=
input
,
data_residual
=
linear_out
)
return
out
else
:
return
linear_out
def
invresi_blocks
(
self
,
input
,
in_c
,
t
,
c
,
n
,
s
,
name
=
None
):
first_block
=
self
.
inverted_residual_unit
(
input
=
input
,
num_in_filter
=
in_c
,
num_filters
=
c
,
ifshortcut
=
False
,
stride
=
s
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
,
name
=
name
+
'_1'
)
last_residual_block
=
first_block
last_c
=
c
for
i
in
range
(
1
,
n
):
last_residual_block
=
self
.
inverted_residual_unit
(
input
=
last_residual_block
,
num_in_filter
=
last_c
,
num_filters
=
c
,
ifshortcut
=
True
,
stride
=
1
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
last_residual_block
def
MobileNetV2_x0_25
():
model
=
MobileNetV2
(
scale
=
0.25
)
return
model
def
MobileNetV2_x0_5
():
model
=
MobileNetV2
(
scale
=
0.5
)
return
model
def
MobileNetV2_x0_75
():
model
=
MobileNetV2
(
scale
=
0.75
)
return
model
def
MobileNetV2_x1_0
():
model
=
MobileNetV2
(
scale
=
1.0
)
return
model
def
MobileNetV2_x1_5
():
model
=
MobileNetV2
(
scale
=
1.5
)
return
model
def
MobileNetV2_x2_0
():
model
=
MobileNetV2
(
scale
=
2.0
)
return
model
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py
浏览文件 @
99548331
# coding=utf-8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
from
__future__
import
absolute_import
#
from
__future__
import
division
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
import
ast
# You may obtain a copy of the License at
import
argparse
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
os
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle
import
ParamAttr
import
paddlehub
as
hub
import
paddle.nn
as
nn
from
paddle.fluid.core
import
PaddleTensor
,
AnalysisConfig
,
create_paddle_predictor
import
paddle.nn.functional
as
F
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddlehub.common.paddle_helper
import
add_vars_prefix
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddlehub.module.module
import
moduleinfo
from
mobilenet_v2_imagenet_ssld.processor
import
postprocess
,
base64_to_cv2
from
paddlehub.module.cv_module
import
ImageClassifierModule
from
mobilenet_v2_imagenet_ssld.data_feed
import
reader
from
mobilenet_v2_imagenet_ssld.mobilenet_v2
import
MobileNetV2
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
@
moduleinfo
(
def
__init__
(
self
,
name
=
"mobilenet_v2_imagenet_ssld"
,
num_channels
:
int
,
type
=
"CV/image_classification"
,
filter_size
:
int
,
author
=
"paddlepaddle"
,
num_filters
:
int
,
author_email
=
"paddle-dev@baidu.com"
,
stride
:
int
,
summary
=
padding
:
int
,
"Mobilenet_V2 is a image classfication model, this module is trained with ImageNet-2012 dataset."
,
num_groups
:
int
=
1
,
version
=
"1.0.0"
)
name
:
str
=
None
):
class
MobileNetV2ImageNetSSLD
(
hub
.
Module
):
super
(
ConvBNLayer
,
self
).
__init__
()
def
_initialize
(
self
):
self
.
default_pretrained_model_path
=
os
.
path
.
join
(
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
self
.
directory
,
"model"
)
out_channels
=
num_filters
,
label_file
=
os
.
path
.
join
(
self
.
directory
,
"label_list.txt"
)
kernel_size
=
filter_size
,
with
open
(
label_file
,
'r'
,
encoding
=
'utf-8'
)
as
file
:
stride
=
stride
,
self
.
label_list
=
file
.
read
().
split
(
"
\n
"
)[:
-
1
]
padding
=
padding
,
self
.
_set_config
()
groups
=
num_groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
def
get_expected_image_width
(
self
):
bias_attr
=
False
)
return
224
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
def
get_expected_image_height
(
self
):
param_attr
=
ParamAttr
(
name
=
name
+
"_bn_scale"
),
return
224
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn_offset"
),
moving_mean_name
=
name
+
"_bn_mean"
,
def
get_pretrained_images_mean
(
self
):
moving_variance_name
=
name
+
"_bn_variance"
)
im_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
(
1
,
3
)
return
im_mean
def
forward
(
self
,
inputs
:
paddle
.
Tensor
,
if_act
:
bool
=
True
):
y
=
self
.
_conv
(
inputs
)
def
get_pretrained_images_std
(
self
):
y
=
self
.
_batch_norm
(
y
)
im_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
(
1
,
3
)
if
if_act
:
return
im_std
y
=
F
.
relu6
(
y
)
return
y
def
_set_config
(
self
):
"""
predictor config setting
class
InvertedResidualUnit
(
nn
.
Layer
):
"""
"""Inverted Residual unit."""
cpu_config
=
AnalysisConfig
(
self
.
default_pretrained_model_path
)
def
__init__
(
self
,
num_channels
:
int
,
num_in_filter
:
int
,
num_filters
:
int
,
stride
:
int
,
filter_size
:
int
,
cpu_config
.
disable_glog_info
()
padding
:
int
,
expansion_factor
:
int
,
name
:
str
):
cpu_config
.
disable_gpu
()
super
(
InvertedResidualUnit
,
self
).
__init__
()
self
.
cpu_predictor
=
create_paddle_predictor
(
cpu_config
)
num_expfilter
=
int
(
round
(
num_in_filter
*
expansion_factor
))
try
:
self
.
_expand_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
num_filters
=
num_expfilter
,
int
(
_places
[
0
])
filter_size
=
1
,
use_gpu
=
True
stride
=
1
,
except
:
padding
=
0
,
use_gpu
=
False
num_groups
=
1
,
if
use_gpu
:
name
=
name
+
"_expand"
)
gpu_config
=
AnalysisConfig
(
self
.
default_pretrained_model_path
)
gpu_config
.
disable_glog_info
()
self
.
_bottleneck_conv
=
ConvBNLayer
(
num_channels
=
num_expfilter
,
gpu_config
.
enable_use_gpu
(
num_filters
=
num_expfilter
,
memory_pool_init_size_mb
=
1000
,
device_id
=
0
)
filter_size
=
filter_size
,
self
.
gpu_predictor
=
create_paddle_predictor
(
gpu_config
)
stride
=
stride
,
padding
=
padding
,
def
context
(
self
,
trainable
=
True
,
pretrained
=
True
):
num_groups
=
num_expfilter
,
"""context for transfer learning.
name
=
name
+
"_dwise"
)
Args:
self
.
_linear_conv
=
ConvBNLayer
(
num_channels
=
num_expfilter
,
trainable (bool): Set parameters in program to be trainable.
num_filters
=
num_filters
,
pretrained (bool) : Whether to load pretrained model.
filter_size
=
1
,
stride
=
1
,
Returns:
padding
=
0
,
inputs (dict): key is 'image', corresponding vaule is image tensor.
num_groups
=
1
,
outputs (dict): key is :
name
=
name
+
"_linear"
)
'classification', corresponding value is the result of classification.
'feature_map', corresponding value is the result of the layer before the fully connected layer.
def
forward
(
self
,
inputs
:
paddle
.
Tensor
,
ifshortcut
:
bool
):
context_prog (fluid.Program): program for transfer learning.
y
=
self
.
_expand_conv
(
inputs
,
if_act
=
True
)
"""
y
=
self
.
_bottleneck_conv
(
y
,
if_act
=
True
)
context_prog
=
fluid
.
Program
()
y
=
self
.
_linear_conv
(
y
,
if_act
=
False
)
startup_prog
=
fluid
.
Program
()
if
ifshortcut
:
with
fluid
.
program_guard
(
context_prog
,
startup_prog
):
y
=
paddle
.
elementwise_add
(
inputs
,
y
)
with
fluid
.
unique_name
.
guard
():
return
y
image
=
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
224
,
224
],
dtype
=
"float32"
)
mobile_net
=
MobileNetV2
()
class
InversiBlocks
(
nn
.
Layer
):
output
,
feature_map
=
mobile_net
.
net
(
"""Inverted residual block composed by inverted residual unit."""
input
=
image
,
class_dim
=
len
(
self
.
label_list
))
def
__init__
(
self
,
in_c
:
int
,
t
:
int
,
c
:
int
,
n
:
int
,
s
:
int
,
name
:
str
):
super
(
InversiBlocks
,
self
).
__init__
()
name_prefix
=
'@HUB_{}@'
.
format
(
self
.
name
)
inputs
=
{
'image'
:
name_prefix
+
image
.
name
}
self
.
_first_block
=
InvertedResidualUnit
(
num_channels
=
in_c
,
outputs
=
{
num_in_filter
=
in_c
,
'classification'
:
name_prefix
+
output
.
name
,
num_filters
=
c
,
'feature_map'
:
name_prefix
+
feature_map
.
name
stride
=
s
,
}
filter_size
=
3
,
add_vars_prefix
(
context_prog
,
name_prefix
)
padding
=
1
,
add_vars_prefix
(
startup_prog
,
name_prefix
)
expansion_factor
=
t
,
global_vars
=
context_prog
.
global_block
().
vars
name
=
name
+
"_1"
)
inputs
=
{
key
:
global_vars
[
value
]
self
.
_block_list
=
[]
for
key
,
value
in
inputs
.
items
()
for
i
in
range
(
1
,
n
):
}
block
=
self
.
add_sublayer
(
name
+
"_"
+
str
(
i
+
1
),
outputs
=
{
sublayer
=
InvertedResidualUnit
(
num_channels
=
c
,
key
:
global_vars
[
value
]
num_in_filter
=
c
,
for
key
,
value
in
outputs
.
items
()
num_filters
=
c
,
}
stride
=
1
,
filter_size
=
3
,
place
=
fluid
.
CPUPlace
()
padding
=
1
,
exe
=
fluid
.
Executor
(
place
)
expansion_factor
=
t
,
# pretrained
name
=
name
+
"_"
+
str
(
i
+
1
)))
if
pretrained
:
self
.
_block_list
.
append
(
block
)
def
_if_exist
(
var
):
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
b
=
os
.
path
.
exists
(
y
=
self
.
_first_block
(
inputs
,
ifshortcut
=
False
)
os
.
path
.
join
(
self
.
default_pretrained_model_path
,
for
block
in
self
.
_block_list
:
var
.
name
))
y
=
block
(
y
,
ifshortcut
=
True
)
return
b
return
y
fluid
.
io
.
load_vars
(
exe
,
@
moduleinfo
(
name
=
"mobilenet_v2_imagenet_ssld"
,
self
.
default_pretrained_model_path
,
type
=
"cv/classification"
,
context_prog
,
author
=
"paddlepaddle"
,
predicate
=
_if_exist
)
author_email
=
""
,
else
:
summary
=
"mobilenet_v2_imagenet_ssld is a classification model, "
exe
.
run
(
startup_prog
)
"this module is trained with Imagenet dataset."
,
# trainable
version
=
"1.1.0"
,
for
param
in
context_prog
.
global_block
().
iter_parameters
():
meta
=
ImageClassifierModule
)
param
.
trainable
=
trainable
class
MobileNet
(
nn
.
Layer
):
return
inputs
,
outputs
,
context_prog
"""MobileNetV2"""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
def
save_inference_model
(
self
,
super
(
MobileNet
,
self
).
__init__
()
dirname
,
model_filename
=
None
,
self
.
class_dim
=
class_dim
params_filename
=
None
,
combined
=
True
):
bottleneck_params_list
=
[(
1
,
16
,
1
,
1
),
(
6
,
24
,
2
,
2
),
(
6
,
32
,
3
,
2
),
(
6
,
64
,
4
,
2
),
(
6
,
96
,
3
,
1
),
if
combined
:
(
6
,
160
,
3
,
2
),
(
6
,
320
,
1
,
1
)]
model_filename
=
"__model__"
if
not
model_filename
else
model_filename
params_filename
=
"__params__"
if
not
params_filename
else
params_filename
self
.
conv1
=
ConvBNLayer
(
num_channels
=
3
,
place
=
fluid
.
CPUPlace
()
num_filters
=
int
(
32
),
exe
=
fluid
.
Executor
(
place
)
filter_size
=
3
,
stride
=
2
,
program
,
feeded_var_names
,
target_vars
=
fluid
.
io
.
load_inference_model
(
padding
=
1
,
dirname
=
self
.
default_pretrained_model_path
,
executor
=
exe
)
name
=
"conv1_1"
)
fluid
.
io
.
save_inference_model
(
self
.
block_list
=
[]
dirname
=
dirname
,
i
=
1
main_program
=
program
,
in_c
=
int
(
32
)
executor
=
exe
,
for
layer_setting
in
bottleneck_params_list
:
feeded_var_names
=
feeded_var_names
,
t
,
c
,
n
,
s
=
layer_setting
target_vars
=
target_vars
,
i
+=
1
model_filename
=
model_filename
,
block
=
self
.
add_sublayer
(
"conv"
+
str
(
i
),
params_filename
=
params_filename
)
sublayer
=
InversiBlocks
(
in_c
=
in_c
,
t
=
t
,
c
=
int
(
c
),
n
=
n
,
s
=
s
,
name
=
"conv"
+
str
(
i
)))
self
.
block_list
.
append
(
block
)
def
classification
(
self
,
in_c
=
int
(
c
)
images
=
None
,
paths
=
None
,
self
.
out_c
=
1280
batch_size
=
1
,
self
.
conv9
=
ConvBNLayer
(
num_channels
=
in_c
,
use_gpu
=
False
,
num_filters
=
self
.
out_c
,
top_k
=
1
):
filter_size
=
1
,
"""
stride
=
1
,
API for image classification.
padding
=
0
,
name
=
"conv9"
)
Args:
images (numpy.ndarray): data of images, shape of each is [H, W, C], color space must be BGR.
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
paths (list[str]): The paths of images.
batch_size (int): batch size.
self
.
out
=
Linear
(
self
.
out_c
,
use_gpu (bool): Whether to use gpu.
class_dim
,
top_k (int): Return top k results.
weight_attr
=
ParamAttr
(
name
=
"fc10_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc10_offset"
))
Returns:
res (list[dict]): The classfication results.
if
load_checkpoint
is
not
None
:
"""
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
if
use_gpu
:
self
.
set_dict
(
model_dict
)
try
:
print
(
"load custom checkpoint success"
)
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
int
(
_places
[
0
])
else
:
except
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'mobilenet_v2_ssld.pdparams.pdparams'
)
raise
RuntimeError
(
if
not
os
.
path
.
exists
(
checkpoint
):
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
os
.
system
(
)
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/mobilenet_v2_ssld.pdparams -O '
+
checkpoint
)
all_data
=
list
()
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
for
yield_data
in
reader
(
images
,
paths
):
self
.
set_dict
(
model_dict
)
all_data
.
append
(
yield_data
)
print
(
"load pretrained checkpoint success"
)
total_num
=
len
(
all_data
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
loop_num
=
int
(
np
.
ceil
(
total_num
/
batch_size
))
y
=
self
.
conv1
(
inputs
,
if_act
=
True
)
for
block
in
self
.
block_list
:
res
=
list
()
y
=
block
(
y
)
for
iter_id
in
range
(
loop_num
):
y
=
self
.
conv9
(
y
,
if_act
=
True
)
batch_data
=
list
()
y
=
self
.
pool2d_avg
(
y
)
handle_id
=
iter_id
*
batch_size
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
out_c
])
for
image_id
in
range
(
batch_size
):
y
=
self
.
out
(
y
)
try
:
return
y
batch_data
.
append
(
all_data
[
handle_id
+
image_id
])
except
:
pass
# feed batch image
batch_image
=
np
.
array
([
data
[
'image'
]
for
data
in
batch_data
])
batch_image
=
PaddleTensor
(
batch_image
.
copy
())
predictor_output
=
self
.
gpu_predictor
.
run
([
batch_image
])
if
use_gpu
else
self
.
cpu_predictor
.
run
([
batch_image
])
out
=
postprocess
(
data_out
=
predictor_output
[
0
].
as_ndarray
(),
label_list
=
self
.
label_list
,
top_k
=
top_k
)
res
+=
out
return
res
@
serving
def
serving_method
(
self
,
images
,
**
kwargs
):
"""
Run as a service.
"""
images_decode
=
[
base64_to_cv2
(
image
)
for
image
in
images
]
results
=
self
.
classification
(
images
=
images_decode
,
**
kwargs
)
return
results
@
runnable
def
run_cmd
(
self
,
argvs
):
"""
Run as a command.
"""
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
add_help
=
True
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
title
=
"Config options"
,
description
=
"Run configuration for controlling module behavior, not required."
)
self
.
add_module_config_arg
()
self
.
add_module_input_arg
()
args
=
self
.
parser
.
parse_args
(
argvs
)
results
=
self
.
classification
(
paths
=
[
args
.
input_path
],
batch_size
=
args
.
batch_size
,
use_gpu
=
args
.
use_gpu
)
return
results
def
add_module_config_arg
(
self
):
"""
Add the command config options.
"""
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether use GPU or not."
)
self
.
arg_config_group
.
add_argument
(
'--batch_size'
,
type
=
ast
.
literal_eval
,
default
=
1
,
help
=
"batch size."
)
self
.
arg_config_group
.
add_argument
(
'--top_k'
,
type
=
ast
.
literal_eval
,
default
=
1
,
help
=
"Return top k results."
)
def
add_module_input_arg
(
self
):
"""
Add the command input options.
"""
self
.
arg_input_group
.
add_argument
(
'--input_path'
,
type
=
str
,
help
=
"path to image."
)
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/processor.py
已删除
100644 → 0
浏览文件 @
69788b6d
# coding=utf-8
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
base64
import
cv2
import
os
import
numpy
as
np
def
base64_to_cv2
(
b64str
):
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
def
softmax
(
x
):
orig_shape
=
x
.
shape
if
len
(
x
.
shape
)
>
1
:
tmp
=
np
.
max
(
x
,
axis
=
1
)
x
-=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
x
=
np
.
exp
(
x
)
tmp
=
np
.
sum
(
x
,
axis
=
1
)
x
/=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
else
:
tmp
=
np
.
max
(
x
)
x
-=
tmp
x
=
np
.
exp
(
x
)
tmp
=
np
.
sum
(
x
)
x
/=
tmp
return
x
def
postprocess
(
data_out
,
label_list
,
top_k
):
"""
Postprocess output of network, one image at a time.
Args:
data_out (numpy.ndarray): output data of network.
label_list (list): list of label.
top_k (int): Return top k results.
"""
output
=
[]
for
result
in
data_out
:
result_i
=
softmax
(
result
)
output_i
=
{}
indexs
=
np
.
argsort
(
result_i
)[::
-
1
][
0
:
top_k
]
for
index
in
indexs
:
label
=
label_list
[
index
].
split
(
','
)[
0
]
output_i
[
label
]
=
float
(
result_i
[
index
])
output
.
append
(
output_i
)
return
output
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录