未验证 提交 988406c0 编写于 作者: S Steffy-zxf 提交者: GitHub

Update README.md

上级 deface56
......@@ -9,16 +9,16 @@ PaddleHub是基于PaddlePaddle生态下的预训练模型管理和迁移学习
* 便捷地获取PaddlePaddle生态下的所有预训练模型,涵盖了图像分类、目标检测、词法分析、语义模型、情感分析、语言模型、视频分类、图像生成、图像分割等主流模型。
* 更多详情可查看官网:https://www.paddlepaddle.org.cn/hub
* 通过PaddleHub Fine-tune API,结合少量代码即可完成**大规模预训练模型**的迁移学习,具体Demo可参考以下链接:
* [文本分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/text-classification)
* [序列标注](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/sequence-labeling)
* [多标签分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/multi-label-classification)
* [图像分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/image-classification)
* [检索式问答任务](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/qa_classification)
* [回归任务](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/sentence_similarity)
* [句子语义相似度计算](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/sentence_similarity)
* [阅读理解任务](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/reading-comprehension)
* [文本分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.3/demo/text-classification)
* [序列标注](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.3/demo/sequence-labeling)
* [多标签分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.3/demo/multi-label-classification)
* [图像分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.3/demo/image-classification)
* [检索式问答任务](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.3/demo/qa_classification)
* [回归任务](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.3/demo/sentence_similarity)
* [句子语义相似度计算](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.3/demo/sentence_similarity)
* [阅读理解任务](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.3/demo/reading-comprehension)
* 支持超参优化(AutoDL Finetuner),自动调整超参数,给出效果较佳的超参数组合。
* [PaddleHub超参优化功能AutoDL Finetuner使用示例](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/autofinetune)
* [PaddleHub超参优化功能AutoDL Finetuner使用示例](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.3/demo/autofinetune)
* 引入『**模型即软件**』的设计理念,通过Python API或者命令行实现一键预测,更方便地应用PaddlePaddle模型库。
* [PaddleHub命令行工具介绍](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub%E5%91%BD%E4%BB%A4%E8%A1%8C%E5%B7%A5%E5%85%B7)
* 一键Module服务化部署 - HubServing
......@@ -78,7 +78,7 @@ $ hub run ssd_mobilenet_v1_pascal --input_path test_object_detection.jpg
$ hub run yolov3_coco2017 --input_path test_object_detection.jpg
$ hub run faster_rcnn_coco2017 --input_path test_object_detection.jpg
```
![SSD检测结果](https://raw.githubusercontent.com/PaddlePaddle/PaddleHub/release/v1.2/docs/imgs/object_detection_result.png)
![SSD检测结果](https://raw.githubusercontent.com/PaddlePaddle/PaddleHub/release/v1.3/docs/imgs/object_detection_result.png)
除了上述三类模型外,PaddleHub还发布了语言模型、语义模型、图像分类、生成模型、视频分类等业界主流模型,更多PaddleHub已经发布的模型,请前往 https://www.paddlepaddle.org.cn/hub 查看
......@@ -107,9 +107,9 @@ PaddleHub如何完成迁移学习,详情参考[wiki教程](https://github.com/
PaddleHub如何自定义迁移任务,详情参考[wiki教程](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub:-%E8%87%AA%E5%AE%9A%E4%B9%89Task)
PaddleHub如何自动优化超参数,详情参考[AutoDL Finetuner使用教程](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.2/tutorial/autofinetune.md)
PaddleHub如何自动优化超参数,详情参考[AutoDL Finetuner使用教程](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.3/tutorial/autofinetune.md)
PaddleHub如何使用ULMFiT策略微调预训练模型,详情参考[PaddleHub 迁移学习与ULMFiT微调策略](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.2/tutorial/strategy_exp.md)
PaddleHub如何使用ULMFiT策略微调预训练模型,详情参考[PaddleHub 迁移学习与ULMFiT微调策略](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.3/tutorial/strategy_exp.md)
## FAQ
......@@ -155,4 +155,4 @@ print(res)
## 更新历史
详情参考[更新历史](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.2/RELEASE.md)
详情参考[更新历史](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.3/RELEASE.md)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册