未验证 提交 92cff59d 编写于 作者: S Steffy-zxf 提交者: GitHub

Update text_classify_task.md

上级 d9293a3f
...@@ -25,7 +25,7 @@ hub.TextClassifierTask( ...@@ -25,7 +25,7 @@ hub.TextClassifierTask(
* startup_program (fluid.Program): 存储了模型参数初始化op的Program,如果未提供,则使用fluid.default_startup_program() * startup_program (fluid.Program): 存储了模型参数初始化op的Program,如果未提供,则使用fluid.default_startup_program()
* config ([RunConfig](../config.md)): 运行配置,如设置batch_size,epoch,learning_rate等。 * config ([RunConfig](../config.md)): 运行配置,如设置batch_size,epoch,learning_rate等。
* hidden_units (list): TextClassifierTask最终的全连接层输出维度为label_size,是每个label的概率值。在这个全连接层之前可以设置额外的全连接层,并指定它们的输出维度,例如hidden_units=[4,2]表示先经过一层输出维度为4的全连接层,再输入一层输出维度为2的全连接层,最后再输入输出维度为label_size的全连接层。 * hidden_units (list): TextClassifierTask最终的全连接层输出维度为label_size,是每个label的概率值。在这个全连接层之前可以设置额外的全连接层,并指定它们的输出维度,例如hidden_units=[4,2]表示先经过一层输出维度为4的全连接层,再输入一层输出维度为2的全连接层,最后再输入输出维度为label_size的全连接层。
* metrics_choices("default" or list ⊂ ["acc", "f1", "matthews"]): 任务训练过程中需要计算的评估指标,默认为“default”,此时等效于["acc"]。metrics_choices支持训练过程中同时评估多个指标,其中指定的第一个指标将被作为主指标用于判断当前得分是否为最佳分值,例如["matthews", "acc"],"matthews"将作为主指标,参与最佳模型的判断中;“acc”只计算并输出,不参与最佳模型的判断。 * metrics_choices("default" or list ⊂ ["acc", "precision", "recall", "f1", "matthews"]): 任务训练过程中需要计算的评估指标,默认为“default”,此时等效于["acc"]。metrics_choices支持训练过程中同时评估多个指标,其中指定的第一个指标将被作为主指标用于判断当前得分是否为最佳分值,例如["matthews", "acc"],"matthews"将作为主指标,参与最佳模型的判断中;“acc”只计算并输出,不参与最佳模型的判断。
**返回** **返回**
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册