Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
86e4895a
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
283
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
86e4895a
编写于
1月 15, 2019
作者:
Z
Zeyu Chen
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'master' of
https://github.com/PaddlePaddle/PaddleHub
上级
280b8f0a
088cf9cb
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
161 addition
and
0 deletion
+161
-0
example/image-classification/nets.py
example/image-classification/nets.py
+126
-0
example/image-classification/pretraind_models/download_model.sh
...e/image-classification/pretraind_models/download_model.sh
+35
-0
未找到文件。
example/image-classification/nets.py
0 → 100644
浏览文件 @
86e4895a
# coding: utf-8
# this model is copy from paddle models repo as a demo for fine-tuning
# for more detail, see https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/image_classification/
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
math
__all__
=
[
"ResNet"
,
"ResNet50"
,
"ResNet101"
,
"ResNet152"
]
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
ResNet
():
def
__init__
(
self
,
layers
=
50
):
self
.
params
=
train_parameters
self
.
layers
=
layers
def
net
(
self
,
input
,
class_dim
=
1000
):
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
,
pool
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
)
else
:
return
input
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
ResNet50
():
model
=
ResNet
(
layers
=
50
)
return
model
def
ResNet101
():
model
=
ResNet
(
layers
=
101
)
return
model
def
ResNet152
():
model
=
ResNet
(
layers
=
152
)
return
model
example/image-classification/pretraind_models/download_model.sh
0 → 100644
浏览文件 @
86e4895a
#!/bin/bash
set
-o
nounset
set
-o
errexit
script_path
=
$(
cd
`
dirname
$0
`
;
pwd
)
if
[
$#
-ne
1
]
then
echo
"usage: sh
$0
{PRETRAINED_MODEL_NAME}"
exit
1
fi
if
[
$1
!=
"ResNet50"
-a
$1
!=
"ResNet101"
-a
$1
!=
"ResNet152"
]
then
echo
"only suppory pretrained model in {ResNet50, ResNet101, ResNet152}"
exit
1
fi
model_name
=
${
1
}
_pretrained
model
=
${
model_name
}
.zip
cd
${
script_path
}
if
[
-d
${
model_name
}
]
then
echo
"model file
${
model_name
}
is already existed"
exit
0
fi
if
[
!
-f
${
model
}
]
then
wget http://paddle-imagenet-models-name.bj.bcebos.com/
${
model
}
fi
unzip
${
model
}
# rm ${model}
rm
-rf
__MACOSX
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录