Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
6da4a339
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6da4a339
编写于
10月 12, 2020
作者:
H
haoyuying
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mobilenet_v2_imagenet_ssld 2.0beta
上级
c07d1ffe
变更
7
展开全部
隐藏空白更改
内联
并排
Showing
7 changed file
with
207 addition
and
1805 deletion
+207
-1805
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/README.md
...image/classification/mobilenet_v2_imagenet_ssld/README.md
+0
-159
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/__init__.py
...age/classification/mobilenet_v2_imagenet_ssld/__init__.py
+0
-0
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/data_feed.py
...ge/classification/mobilenet_v2_imagenet_ssld/data_feed.py
+0
-84
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/label_list.txt
.../classification/mobilenet_v2_imagenet_ssld/label_list.txt
+0
-1000
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/mobilenet_v2.py
...classification/mobilenet_v2_imagenet_ssld/mobilenet_v2.py
+0
-231
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py
...image/classification/mobilenet_v2_imagenet_ssld/module.py
+207
-276
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/processor.py
...ge/classification/mobilenet_v2_imagenet_ssld/processor.py
+0
-55
未找到文件。
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/README.md
已删除
100644 → 0
浏览文件 @
c07d1ffe
```
shell
$
hub
install
mobilenet_v2_imagenet_ssld
==
1.0.0
```
<p
align=
"center"
>
<img
src=
"http://bj.bcebos.com/ibox-thumbnail98/e7b22762cf42ab0e1e1fab6b8720938b?authorization=bce-auth-v1%2Ffbe74140929444858491fbf2b6bc0935%2F2020-04-08T11%3A49%3A16Z%2F1800%2F%2Faf385f56da3c8ee1298588939d93533a72203c079ae1187affa2da555b9898ea"
hspace=
'5'
width=
800/
>
<br
/>
MobileNet 系列的网络结构
</p>
模型的详情可参考
[
论文
](
https://arxiv.org/pdf/1801.04381.pdf
)
## 命令行预测
```
hub run mobilenet_v2_imagenet_ssld --input_path "/PATH/TO/IMAGE"
```
## API
```
python
def
get_expected_image_width
()
```
返回预处理的图片宽度,也就是224。
```
python
def
get_expected_image_height
()
```
返回预处理的图片高度,也就是224。
```
python
def
get_pretrained_images_mean
()
```
返回预处理的图片均值,也就是
\[
0.485, 0.456, 0.406
\]
。
```
python
def
get_pretrained_images_std
()
```
返回预处理的图片标准差,也就是
\[
0.229, 0.224, 0.225
\]
。
```
python
def
context
(
trainable
=
True
,
pretrained
=
True
)
```
**参数**
*
trainable (bool): 计算图的参数是否为可训练的;
*
pretrained (bool): 是否加载默认的预训练模型。
**返回**
*
inputs (dict): 计算图的输入,key 为 'image', value 为图片的张量;
*
outputs (dict): 计算图的输出,key 为 'classification' 和 'feature_map',其相应的值为:
*
classification (paddle.fluid.framework.Variable): 分类结果,也就是全连接层的输出;
*
feature
\_
map (paddle.fluid.framework.Variable): 特征匹配,全连接层前面的那个张量。
*
context
\_
prog(fluid.Program): 计算图,用于迁移学习。
```
python
def
classification
(
images
=
None
,
paths
=
None
,
batch_size
=
1
,
use_gpu
=
False
,
top_k
=
1
):
```
**参数**
*
images (list
\[
numpy.ndarray
\]
): 图片数据,每一个图片数据的shape 均为
\[
H, W, C
\]
,颜色空间为 BGR;
*
paths (list
\[
str
\]
): 图片的路径;
*
batch
\_
size (int): batch 的大小;
*
use
\_
gpu (bool): 是否使用 GPU 来预测;
*
top
\_
k (int): 返回预测结果的前 k 个。
**返回**
res (list
\[
dict
\]
): 分类结果,列表的每一个元素均为字典,其中 key 为识别动物的类别,value为置信度。
```
python
def
save_inference_model
(
dirname
,
model_filename
=
None
,
params_filename
=
None
,
combined
=
True
)
```
将模型保存到指定路径。
**参数**
*
dirname: 存在模型的目录名称
*
model_filename: 模型文件名称,默认为
\_\_
model
\_\_
*
params_filename: 参数文件名称,默认为
\_\_
params
\_\_
(仅当
`combined`
为True时生效)
*
combined: 是否将参数保存到统一的一个文件中
## 代码示例
```
python
import
paddlehub
as
hub
import
cv2
classifier
=
hub
.
Module
(
name
=
"mobilenet_v2_imagenet_ssld"
)
result
=
classifier
.
classification
(
images
=
[
cv2
.
imread
(
'/PATH/TO/IMAGE'
)])
# or
# result = classifier.classification(paths=['/PATH/TO/IMAGE'])
```
## 服务部署
PaddleHub Serving可以部署一个在线动物识别服务。
## 第一步:启动PaddleHub Serving
运行启动命令:
```
shell
$
hub serving start
-m
mobilenet_v2_imagenet_ssld
```
这样就完成了一个在线动物识别服务化API的部署,默认端口号为8866。
**NOTE:**
如使用GPU预测,则需要在启动服务之前,请设置CUDA
\_
VISIBLE
\_
DEVICES环境变量,否则不用设置。
## 第二步:发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```
python
import
requests
import
json
import
cv2
import
base64
def
cv2_to_base64
(
image
):
data
=
cv2
.
imencode
(
'.jpg'
,
image
)[
1
]
return
base64
.
b64encode
(
data
.
tostring
()).
decode
(
'utf8'
)
# 发送HTTP请求
data
=
{
'images'
:[
cv2_to_base64
(
cv2
.
imread
(
"/PATH/TO/IMAGE"
))]}
headers
=
{
"Content-type"
:
"application/json"
}
url
=
"http://127.0.0.1:8866/predict/mobilenet_v2_imagenet_ssld"
r
=
requests
.
post
(
url
=
url
,
headers
=
headers
,
data
=
json
.
dumps
(
data
))
# 打印预测结果
print
(
r
.
json
()[
"results"
])
```
### 查看代码
[
PaddleClas
](
https://github.com/PaddlePaddle/PaddleClas
)
### 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/__init__.py
已删除
100644 → 0
浏览文件 @
c07d1ffe
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/data_feed.py
已删除
100644 → 0
浏览文件 @
c07d1ffe
# coding=utf-8
import
os
import
time
from
collections
import
OrderedDict
import
cv2
import
numpy
as
np
from
PIL
import
Image
__all__
=
[
'reader'
]
DATA_DIM
=
224
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
h_start
=
(
height
-
size
)
/
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
process_image
(
img
):
img
=
resize_short
(
img
,
target_size
=
256
)
img
=
crop_image
(
img
,
target_size
=
DATA_DIM
,
center
=
True
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img
-=
img_mean
img
/=
img_std
return
img
def
reader
(
images
=
None
,
paths
=
None
):
"""
Preprocess to yield image.
Args:
images (list[numpy.ndarray]): images data, shape of each is [H, W, C].
paths (list[str]): paths to images.
Yield:
each (collections.OrderedDict): info of original image, preprocessed image.
"""
component
=
list
()
if
paths
:
for
im_path
in
paths
:
each
=
OrderedDict
()
assert
os
.
path
.
isfile
(
im_path
),
"The {} isn't a valid file path."
.
format
(
im_path
)
each
[
'org_im_path'
]
=
im_path
each
[
'org_im'
]
=
Image
.
open
(
im_path
)
each
[
'org_im_width'
],
each
[
'org_im_height'
]
=
each
[
'org_im'
].
size
component
.
append
(
each
)
if
images
is
not
None
:
assert
type
(
images
),
"images is a list."
for
im
in
images
:
each
=
OrderedDict
()
each
[
'org_im'
]
=
Image
.
fromarray
(
im
[:,
:,
::
-
1
])
each
[
'org_im_path'
]
=
'ndarray_time={}'
.
format
(
round
(
time
.
time
(),
6
)
*
1e6
)
each
[
'org_im_width'
],
each
[
'org_im_height'
]
=
each
[
'org_im'
].
size
component
.
append
(
each
)
for
element
in
component
:
element
[
'image'
]
=
process_image
(
element
[
'org_im'
])
yield
element
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/label_list.txt
已删除
100644 → 0
浏览文件 @
c07d1ffe
此差异已折叠。
点击以展开。
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/mobilenet_v2.py
已删除
100644 → 0
浏览文件 @
c07d1ffe
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
'MobileNetV2_x0_25'
,
'MobileNetV2_x0_5'
,
'MobileNetV2_x0_75'
,
'MobileNetV2_x1_0'
,
'MobileNetV2_x1_5'
,
'MobileNetV2_x2_0'
,
'MobileNetV2'
]
class
MobileNetV2
():
def
__init__
(
self
,
scale
=
1.0
):
self
.
scale
=
scale
def
net
(
self
,
input
,
class_dim
=
1000
):
scale
=
self
.
scale
bottleneck_params_list
=
[
(
1
,
16
,
1
,
1
),
(
6
,
24
,
2
,
2
),
(
6
,
32
,
3
,
2
),
(
6
,
64
,
4
,
2
),
(
6
,
96
,
3
,
1
),
(
6
,
160
,
3
,
2
),
(
6
,
320
,
1
,
1
),
]
#conv1
input
=
self
.
conv_bn_layer
(
input
,
num_filters
=
int
(
32
*
scale
),
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
if_act
=
True
,
name
=
'conv1_1'
)
# bottleneck sequences
i
=
1
in_c
=
int
(
32
*
scale
)
for
layer_setting
in
bottleneck_params_list
:
t
,
c
,
n
,
s
=
layer_setting
i
+=
1
input
=
self
.
invresi_blocks
(
input
=
input
,
in_c
=
in_c
,
t
=
t
,
c
=
int
(
c
*
scale
),
n
=
n
,
s
=
s
,
name
=
'conv'
+
str
(
i
))
in_c
=
int
(
c
*
scale
)
#last_conv
input
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
int
(
1280
*
scale
)
if
scale
>
1.0
else
1280
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
name
=
'conv9'
)
input
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_type
=
'avg'
,
global_pooling
=
True
)
output
=
fluid
.
layers
.
fc
(
input
=
input
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
name
=
'fc10_weights'
),
bias_attr
=
ParamAttr
(
name
=
'fc10_offset'
))
return
output
,
input
def
conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
channels
=
None
,
num_groups
=
1
,
if_act
=
True
,
name
=
None
,
use_cudnn
=
True
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
ParamAttr
(
name
=
name
+
'_weights'
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
return
fluid
.
layers
.
relu6
(
bn
)
else
:
return
bn
def
shortcut
(
self
,
input
,
data_residual
):
return
fluid
.
layers
.
elementwise_add
(
input
,
data_residual
)
def
inverted_residual_unit
(
self
,
input
,
num_in_filter
,
num_filters
,
ifshortcut
,
stride
,
filter_size
,
padding
,
expansion_factor
,
name
=
None
):
num_expfilter
=
int
(
round
(
num_in_filter
*
expansion_factor
))
channel_expand
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_expfilter
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
True
,
name
=
name
+
'_expand'
)
bottleneck_conv
=
self
.
conv_bn_layer
(
input
=
channel_expand
,
num_filters
=
num_expfilter
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
num_groups
=
num_expfilter
,
if_act
=
True
,
name
=
name
+
'_dwise'
,
use_cudnn
=
False
)
linear_out
=
self
.
conv_bn_layer
(
input
=
bottleneck_conv
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
False
,
name
=
name
+
'_linear'
)
if
ifshortcut
:
out
=
self
.
shortcut
(
input
=
input
,
data_residual
=
linear_out
)
return
out
else
:
return
linear_out
def
invresi_blocks
(
self
,
input
,
in_c
,
t
,
c
,
n
,
s
,
name
=
None
):
first_block
=
self
.
inverted_residual_unit
(
input
=
input
,
num_in_filter
=
in_c
,
num_filters
=
c
,
ifshortcut
=
False
,
stride
=
s
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
,
name
=
name
+
'_1'
)
last_residual_block
=
first_block
last_c
=
c
for
i
in
range
(
1
,
n
):
last_residual_block
=
self
.
inverted_residual_unit
(
input
=
last_residual_block
,
num_in_filter
=
last_c
,
num_filters
=
c
,
ifshortcut
=
True
,
stride
=
1
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
last_residual_block
def
MobileNetV2_x0_25
():
model
=
MobileNetV2
(
scale
=
0.25
)
return
model
def
MobileNetV2_x0_5
():
model
=
MobileNetV2
(
scale
=
0.5
)
return
model
def
MobileNetV2_x0_75
():
model
=
MobileNetV2
(
scale
=
0.75
)
return
model
def
MobileNetV2_x1_0
():
model
=
MobileNetV2
(
scale
=
1.0
)
return
model
def
MobileNetV2_x1_5
():
model
=
MobileNetV2
(
scale
=
1.5
)
return
model
def
MobileNetV2_x2_0
():
model
=
MobileNetV2
(
scale
=
2.0
)
return
model
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py
浏览文件 @
6da4a339
# coding=utf-8
from
__future__
import
absolute_import
from
__future__
import
division
import
ast
import
argparse
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
from
paddle.fluid.core
import
PaddleTensor
,
AnalysisConfig
,
create_paddle_predictor
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
from
paddlehub.common.paddle_helper
import
add_vars_prefix
from
mobilenet_v2_imagenet_ssld.processor
import
postprocess
,
base64_to_cv2
from
mobilenet_v2_imagenet_ssld.data_feed
import
reader
from
mobilenet_v2_imagenet_ssld.mobilenet_v2
import
MobileNetV2
@
moduleinfo
(
name
=
"mobilenet_v2_imagenet_ssld"
,
type
=
"CV/image_classification"
,
author
=
"paddlepaddle"
,
author_email
=
"paddle-dev@baidu.com"
,
summary
=
"Mobilenet_V2 is a image classfication model, this module is trained with ImageNet-2012 dataset."
,
version
=
"1.0.0"
)
class
MobileNetV2ImageNetSSLD
(
hub
.
Module
):
def
_initialize
(
self
):
self
.
default_pretrained_model_path
=
os
.
path
.
join
(
self
.
directory
,
"model"
)
label_file
=
os
.
path
.
join
(
self
.
directory
,
"label_list.txt"
)
with
open
(
label_file
,
'r'
,
encoding
=
'utf-8'
)
as
file
:
self
.
label_list
=
file
.
read
().
split
(
"
\n
"
)[:
-
1
]
self
.
_set_config
()
def
get_expected_image_width
(
self
):
return
224
def
get_expected_image_height
(
self
):
return
224
def
get_pretrained_images_mean
(
self
):
im_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
(
1
,
3
)
return
im_mean
def
get_pretrained_images_std
(
self
):
im_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
(
1
,
3
)
return
im_std
def
_set_config
(
self
):
"""
predictor config setting
"""
cpu_config
=
AnalysisConfig
(
self
.
default_pretrained_model_path
)
cpu_config
.
disable_glog_info
()
cpu_config
.
disable_gpu
()
self
.
cpu_predictor
=
create_paddle_predictor
(
cpu_config
)
try
:
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
int
(
_places
[
0
])
use_gpu
=
True
except
:
use_gpu
=
False
if
use_gpu
:
gpu_config
=
AnalysisConfig
(
self
.
default_pretrained_model_path
)
gpu_config
.
disable_glog_info
()
gpu_config
.
enable_use_gpu
(
memory_pool_init_size_mb
=
1000
,
device_id
=
0
)
self
.
gpu_predictor
=
create_paddle_predictor
(
gpu_config
)
def
context
(
self
,
trainable
=
True
,
pretrained
=
True
):
"""context for transfer learning.
Args:
trainable (bool): Set parameters in program to be trainable.
pretrained (bool) : Whether to load pretrained model.
Returns:
inputs (dict): key is 'image', corresponding vaule is image tensor.
outputs (dict): key is :
'classification', corresponding value is the result of classification.
'feature_map', corresponding value is the result of the layer before the fully connected layer.
context_prog (fluid.Program): program for transfer learning.
"""
context_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
context_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
224
,
224
],
dtype
=
"float32"
)
mobile_net
=
MobileNetV2
()
output
,
feature_map
=
mobile_net
.
net
(
input
=
image
,
class_dim
=
len
(
self
.
label_list
))
name_prefix
=
'@HUB_{}@'
.
format
(
self
.
name
)
inputs
=
{
'image'
:
name_prefix
+
image
.
name
}
outputs
=
{
'classification'
:
name_prefix
+
output
.
name
,
'feature_map'
:
name_prefix
+
feature_map
.
name
}
add_vars_prefix
(
context_prog
,
name_prefix
)
add_vars_prefix
(
startup_prog
,
name_prefix
)
global_vars
=
context_prog
.
global_block
().
vars
inputs
=
{
key
:
global_vars
[
value
]
for
key
,
value
in
inputs
.
items
()
}
outputs
=
{
key
:
global_vars
[
value
]
for
key
,
value
in
outputs
.
items
()
}
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# pretrained
if
pretrained
:
def
_if_exist
(
var
):
b
=
os
.
path
.
exists
(
os
.
path
.
join
(
self
.
default_pretrained_model_path
,
var
.
name
))
return
b
fluid
.
io
.
load_vars
(
exe
,
self
.
default_pretrained_model_path
,
context_prog
,
predicate
=
_if_exist
)
else
:
exe
.
run
(
startup_prog
)
# trainable
for
param
in
context_prog
.
global_block
().
iter_parameters
():
param
.
trainable
=
trainable
return
inputs
,
outputs
,
context_prog
def
save_inference_model
(
self
,
dirname
,
model_filename
=
None
,
params_filename
=
None
,
combined
=
True
):
if
combined
:
model_filename
=
"__model__"
if
not
model_filename
else
model_filename
params_filename
=
"__params__"
if
not
params_filename
else
params_filename
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
program
,
feeded_var_names
,
target_vars
=
fluid
.
io
.
load_inference_model
(
dirname
=
self
.
default_pretrained_model_path
,
executor
=
exe
)
fluid
.
io
.
save_inference_model
(
dirname
=
dirname
,
main_program
=
program
,
executor
=
exe
,
feeded_var_names
=
feeded_var_names
,
target_vars
=
target_vars
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
def
classification
(
self
,
images
=
None
,
paths
=
None
,
batch_size
=
1
,
use_gpu
=
False
,
top_k
=
1
):
"""
API for image classification.
Args:
images (numpy.ndarray): data of images, shape of each is [H, W, C], color space must be BGR.
paths (list[str]): The paths of images.
batch_size (int): batch size.
use_gpu (bool): Whether to use gpu.
top_k (int): Return top k results.
Returns:
res (list[dict]): The classfication results.
"""
if
use_gpu
:
try
:
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
int
(
_places
[
0
])
except
:
raise
RuntimeError
(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data
=
list
()
for
yield_data
in
reader
(
images
,
paths
):
all_data
.
append
(
yield_data
)
total_num
=
len
(
all_data
)
loop_num
=
int
(
np
.
ceil
(
total_num
/
batch_size
))
res
=
list
()
for
iter_id
in
range
(
loop_num
):
batch_data
=
list
()
handle_id
=
iter_id
*
batch_size
for
image_id
in
range
(
batch_size
):
try
:
batch_data
.
append
(
all_data
[
handle_id
+
image_id
])
except
:
pass
# feed batch image
batch_image
=
np
.
array
([
data
[
'image'
]
for
data
in
batch_data
])
batch_image
=
PaddleTensor
(
batch_image
.
copy
())
predictor_output
=
self
.
gpu_predictor
.
run
([
batch_image
])
if
use_gpu
else
self
.
cpu_predictor
.
run
([
batch_image
])
out
=
postprocess
(
data_out
=
predictor_output
[
0
].
as_ndarray
(),
label_list
=
self
.
label_list
,
top_k
=
top_k
)
res
+=
out
return
res
@
serving
def
serving_method
(
self
,
images
,
**
kwargs
):
"""
Run as a service.
"""
images_decode
=
[
base64_to_cv2
(
image
)
for
image
in
images
]
results
=
self
.
classification
(
images
=
images_decode
,
**
kwargs
)
return
results
@
runnable
def
run_cmd
(
self
,
argvs
):
"""
Run as a command.
"""
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
add_help
=
True
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
title
=
"Config options"
,
description
=
"Run configuration for controlling module behavior, not required."
)
self
.
add_module_config_arg
()
self
.
add_module_input_arg
()
args
=
self
.
parser
.
parse_args
(
argvs
)
results
=
self
.
classification
(
paths
=
[
args
.
input_path
],
batch_size
=
args
.
batch_size
,
use_gpu
=
args
.
use_gpu
)
return
results
def
add_module_config_arg
(
self
):
"""
Add the command config options.
"""
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether use GPU or not."
)
self
.
arg_config_group
.
add_argument
(
'--batch_size'
,
type
=
ast
.
literal_eval
,
default
=
1
,
help
=
"batch size."
)
self
.
arg_config_group
.
add_argument
(
'--top_k'
,
type
=
ast
.
literal_eval
,
default
=
1
,
help
=
"Return top k results."
)
def
add_module_input_arg
(
self
):
"""
Add the command input options.
"""
self
.
arg_input_group
.
add_argument
(
'--input_path'
,
type
=
str
,
help
=
"path to image."
)
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
filter_size
:
int
,
num_filters
:
int
,
stride
:
int
,
padding
:
int
,
num_groups
:
int
=
1
,
name
:
str
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
param_attr
=
ParamAttr
(
name
=
name
+
"_bn_scale"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn_offset"
),
moving_mean_name
=
name
+
"_bn_mean"
,
moving_variance_name
=
name
+
"_bn_variance"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
,
if_act
:
bool
=
True
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
if
if_act
:
y
=
F
.
relu6
(
y
)
return
y
class
InvertedResidualUnit
(
nn
.
Layer
):
"""Inverted Residual unit."""
def
__init__
(
self
,
num_channels
:
int
,
num_in_filter
:
int
,
num_filters
:
int
,
stride
:
int
,
filter_size
:
int
,
padding
:
int
,
expansion_factor
:
int
,
name
:
str
):
super
(
InvertedResidualUnit
,
self
).
__init__
()
num_expfilter
=
int
(
round
(
num_in_filter
*
expansion_factor
))
self
.
_expand_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_expfilter
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
name
=
name
+
"_expand"
)
self
.
_bottleneck_conv
=
ConvBNLayer
(
num_channels
=
num_expfilter
,
num_filters
=
num_expfilter
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
num_groups
=
num_expfilter
,
name
=
name
+
"_dwise"
)
self
.
_linear_conv
=
ConvBNLayer
(
num_channels
=
num_expfilter
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
name
=
name
+
"_linear"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
,
ifshortcut
:
bool
):
y
=
self
.
_expand_conv
(
inputs
,
if_act
=
True
)
y
=
self
.
_bottleneck_conv
(
y
,
if_act
=
True
)
y
=
self
.
_linear_conv
(
y
,
if_act
=
False
)
if
ifshortcut
:
y
=
paddle
.
elementwise_add
(
inputs
,
y
)
return
y
class
InversiBlocks
(
nn
.
Layer
):
"""Inverted residual block composed by inverted residual unit."""
def
__init__
(
self
,
in_c
:
int
,
t
:
int
,
c
:
int
,
n
:
int
,
s
:
int
,
name
:
str
):
super
(
InversiBlocks
,
self
).
__init__
()
self
.
_first_block
=
InvertedResidualUnit
(
num_channels
=
in_c
,
num_in_filter
=
in_c
,
num_filters
=
c
,
stride
=
s
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
,
name
=
name
+
"_1"
)
self
.
_block_list
=
[]
for
i
in
range
(
1
,
n
):
block
=
self
.
add_sublayer
(
name
+
"_"
+
str
(
i
+
1
),
sublayer
=
InvertedResidualUnit
(
num_channels
=
c
,
num_in_filter
=
c
,
num_filters
=
c
,
stride
=
1
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
,
name
=
name
+
"_"
+
str
(
i
+
1
)))
self
.
_block_list
.
append
(
block
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
_first_block
(
inputs
,
ifshortcut
=
False
)
for
block
in
self
.
_block_list
:
y
=
block
(
y
,
ifshortcut
=
True
)
return
y
@
moduleinfo
(
name
=
"mobilenet_v2_imagenet_ssld"
,
type
=
"cv/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"mobilenet_v2_imagenet_ssld is a classification model, "
"this module is trained with Imagenet dataset."
,
version
=
"1.0.0"
,
meta
=
ImageClassifierModule
)
class
MobileNet
(
nn
.
Layer
):
"""MobileNetV2"""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
MobileNet
,
self
).
__init__
()
self
.
class_dim
=
class_dim
bottleneck_params_list
=
[(
1
,
16
,
1
,
1
),
(
6
,
24
,
2
,
2
),
(
6
,
32
,
3
,
2
),
(
6
,
64
,
4
,
2
),
(
6
,
96
,
3
,
1
),
(
6
,
160
,
3
,
2
),
(
6
,
320
,
1
,
1
)]
self
.
conv1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
int
(
32
),
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
name
=
"conv1_1"
)
self
.
block_list
=
[]
i
=
1
in_c
=
int
(
32
)
for
layer_setting
in
bottleneck_params_list
:
t
,
c
,
n
,
s
=
layer_setting
i
+=
1
block
=
self
.
add_sublayer
(
"conv"
+
str
(
i
),
sublayer
=
InversiBlocks
(
in_c
=
in_c
,
t
=
t
,
c
=
int
(
c
),
n
=
n
,
s
=
s
,
name
=
"conv"
+
str
(
i
)))
self
.
block_list
.
append
(
block
)
in_c
=
int
(
c
)
self
.
out_c
=
1280
self
.
conv9
=
ConvBNLayer
(
num_channels
=
in_c
,
num_filters
=
self
.
out_c
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
name
=
"conv9"
)
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
out
=
Linear
(
self
.
out_c
,
class_dim
,
weight_attr
=
ParamAttr
(
name
=
"fc10_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc10_offset"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'MobileNetV2_ssld_pretrained.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://bj.bcebos.com/paddlehub/model/image/object_detection/yolov3_70000.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1
(
inputs
,
if_act
=
True
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
conv9
(
y
,
if_act
=
True
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
out_c
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/processor.py
已删除
100644 → 0
浏览文件 @
c07d1ffe
# coding=utf-8
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
base64
import
cv2
import
os
import
numpy
as
np
def
base64_to_cv2
(
b64str
):
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
def
softmax
(
x
):
orig_shape
=
x
.
shape
if
len
(
x
.
shape
)
>
1
:
tmp
=
np
.
max
(
x
,
axis
=
1
)
x
-=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
x
=
np
.
exp
(
x
)
tmp
=
np
.
sum
(
x
,
axis
=
1
)
x
/=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
else
:
tmp
=
np
.
max
(
x
)
x
-=
tmp
x
=
np
.
exp
(
x
)
tmp
=
np
.
sum
(
x
)
x
/=
tmp
return
x
def
postprocess
(
data_out
,
label_list
,
top_k
):
"""
Postprocess output of network, one image at a time.
Args:
data_out (numpy.ndarray): output data of network.
label_list (list): list of label.
top_k (int): Return top k results.
"""
output
=
[]
for
result
in
data_out
:
result_i
=
softmax
(
result
)
output_i
=
{}
indexs
=
np
.
argsort
(
result_i
)[::
-
1
][
0
:
top_k
]
for
index
in
indexs
:
label
=
label_list
[
index
].
split
(
','
)[
0
]
output_i
[
label
]
=
float
(
result_i
[
index
])
output
.
append
(
output_i
)
return
output
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录