未验证 提交 6b1e5022 编写于 作者: D Daniel Yang 提交者: GitHub

Update readme concisely.

上级 985870ed
English | [简体中文](README_ch.md)
<p align="center">
<img src="./docs/imgs/paddlehub_logo.jpg" align="middle"
</p>
<img src="./docs/imgs/paddlehub_logo.jpg" align="middle">
<p align="center">
<div align="center">
<h3> <a href=#QuickStart> QuickStart </a> | <a href="https://paddlehub.readthedocs.io/en/release-v2.1"> Tutorial </a> | <a href="https://www.paddlepaddle.org.cn/hublist"> Models List </a> | <a href="https://www.paddlepaddle.org.cn/hub"> Demos </a> </h3>
</div>
------------------------------------------------------------------------------------------
......@@ -22,151 +24,44 @@ English | [简体中文](README_ch.md)
<a href="https://github.com/PaddlePaddle/PaddleHub/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleHub?color=ccf"></a>
</p>
## Introduction
- PaddleHub aims to provide developers with rich, high-quality, and directly usable pre-trained models.
- **No need for deep learning background**, you can use AI models quickly and enjoy the dividends of the artificial intelligence era.
- Covers 5 major categories of Image, Text, Audio, Video, and Industrial application, and supports **one-click prediction**, **easy service deployment** and **transfer learning**
- All models are **OPEN SOURCE**, **FREE** to download and use them in offline scenario.
### Recent updates
- **2021.04.27:** The v2.1.0 version is released. **[Improvements]** Add supports for five new models, including two high-precision semantic segmentation models based on VOC dataset and three voice classification models. Enforce the transfer learning capabilities for image semantic segmentation, text semantic matching and voice classification on related datasets. **[Upgrades of deployment capabilities]** Add the export function APIs for two kinds of model formats, i.,e, ONNX and PaddleInference. **Important Open-Source Ecological Cooperation:** add the support for [BentoML](https://github.com/bentoml/BentoML/), which is a cloud native framework for serving deployment. Users can easily serve pre-trained models from PaddleHub by following the [Tutorial notebooks](https://github.com/PaddlePaddle/PaddleHub/blob/release/v2.1/demo/serving/bentoml/cloud-native-model-serving-with-bentoml.ipynb). Also, see this announcement and [Release note](https://github.com/bentoml/BentoML/releases/tag/v0.12.1) from BentoML. (Many thanks to @[parano](https://github.com/parano) @[cqvu](https://github.com/cqvu) @[deehrlic](https://github.com/deehrlic) for contributing this feature in PaddleHub). **[Bug fixes]** [#7da1230](https://github.com/PaddlePaddle/PaddleHub/commit/7da12302dd77e3d739da72821d41715ad8a7c79c) Fixed the problem that the model cannot resume training if metrics is not recorded. [#b0b3144](https://github.com/PaddlePaddle/PaddleHub/commit/b0b3144eff34e47cac8fc450c8b7cb6c557f9b84) Fixed the problem that the thread did not exit normally when the evaluation process was abnormal. [#30aace4](https://github.com/PaddlePaddle/PaddleHub/commit/30aace46414bbeef02beb75b7128f48fada82150) Improve the model installation process. The total number of pre-trained models reaches **【300】**.
- **2021.02.18:** The v2.0.0 version is released, making model development and debugging easier, and the finetune task is more flexible and easy to use.The ability to transfer learning for visual tasks is fully upgraded, supporting various tasks such as image classification, image coloring, and style transfer; Transformer models such as BERT, ERNIE, and RoBERTa are upgraded to dynamic graphs, supporting Fine-Tune capabilities for text classification and sequence labeling; Optimize the Serving capability, support multi-card prediction, automatic load balancing, and greatly improve performance; the new automatic data enhancement capability Auto Augment can efficiently search for data enhancement strategy combinations suitable for data sets. 61 new word vector models were added, including 51 Chinese models and 10 English models; add 4 image segmentation models, 2 depth models, 7 image generation models, and 3 text generation models, the total number of pre-trained models reaches **【274】**.
- **2020.12.1:** Release 2.0-beta1 version, migrate ERNIE, RoBERTa, BERT to dynamic graph mode. Add text classification fine-tune task based on large-scale pre-trained models.
- **2020.11.20:** Release 2.0-beta version, fully migrate the dynamic graph programming mode, and upgrade the service deployment Serving capability; add 1 hand key point detection model, 12 image cartoonization models, 3 image editing models, 3 speech synthesis models, syntax Analyzing one, the total number of pre-trained models reaches **【182】**.
- **2020.10.09:** Added 4 new OCR multi-language series models, 4 image editing models, and the total number of pre-trained models reached **【162】**.
- **2020.09.27:** 6 new text generation models and 1 image segmentation model were added, and the total number of pre-trained models reached **【154】**.
- **2020.08.13:** Released v1.8.1, added a segmentation model, and supports EMNLP2019-Sentence-BERT as a text matching task network. The total number of pre-training models reaches **【147】**.
- **2020.07.29:** Release v1.8.0, new AI couplets and AI writing poems, jieba word segmentation, LDA topic model, semantic similarity calculation, new target detection, short video classification model, ultra-lightweight Chinese and English OCR, new pedestrian detection, vehicle industrial-grade models such as detection and animal recognition support [VisualDL](https://github.com/PaddlePaddle/VisualDL) visualization training, and the total number of pre-training models reaches **【135】**.
## Features
## Introduction and Features
- PaddleHub aims to provide developers with rich, high-quality, and directly usable pre-trained models.
- **Abundant Pre-trained Models**: 300+ pre-trained models covering the 5 major categories including Image, Text, Audio, Video, and Industrial application. All of them are free for download and offline usage.
- **No need for deep learning background**: you can use AI models quickly and enjoy the dividends of the artificial intelligence era.
- **Quick Model Prediction**: Model prediction can be realized through a few lines of scripts to quickly experience the model effect.
- **Model As Service**: A one-line command to build deep learning model API service deployment capabilities.
- **Easy-to-use Transfer Learning**: Just few lines of code you can complete the transfer-learning task like image classification and text classification based on high quality pre-trained models.
- **Cross-platform**: Can run on Linux, Windows, MacOS and other operating systems.
## Visualization Demo
### Text Recognition
- Contain ultra-lightweight Chinese and English OCR models, high-precision Chinese and English, multilingual German, French, Japanese, Korean OCR recognition.
- Many thanks to CopyRight@[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) for the pre-trained models, you can try to train your models with PadddleOCR.
<div align="center">
<img src="./docs/imgs/Readme_Related/Image_Ocr.gif" width = "800" height = "400" />
</div>
### Face Detection
- Including face detection, mask face detection, multiple algorithms are optional.
- Many thanks to CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) for the pre-trained models, you can try to train your models with PadddleDetection.
<div align="center">
<img src="./docs/imgs/Readme_Related/Image_ObjectDetection_Face_Mask.gif" width = "588" height = "400" />
</div>
- **Model As Service**: one-line command to build deep learning model API service deployment capabilities.
- **Easy-to-use Transfer Learning**: few lines of code to complete the transfer-learning task such as image classification and text classification based on high quality pre-trained models.
- **Cross-platform**: support Linux, Windows, MacOS and other operating systems.
### Image Editing
- 4x super resolution effect, multiple super resolution models are optional.
- Colorization models can be used to repair old grayscale photos.
- Many thanks to CopyRight@[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN) for the pre-trained models, you can try to train your models with PadddleGAN.
<div align="center">
<table>
<thead>
</thead>
<tbody>
<tr>
<th>SuperResolution </th>
<th>Restoration </th>
</tr>
<tr>
<th>
<a>
<img src="./docs/imgs/Readme_Related/ImageEdit_SuperResolution.gif" width = "266" height = "400" /></a><br>
</th>
<th>
<a>
<img src="./docs/imgs/Readme_Related/ImageEdit_Restoration.gif" width = "300" height = "400" /></a><br>
</th>
</tr>
</tbody>
</table>
</div>
### Recent updates
- **2021.04.27:** The v2.1.0 version is released. [1] Add supports for five new models, including two high-precision semantic segmentation models based on VOC dataset and three voice classification models. [2] Enforce the transfer learning capabilities for image semantic segmentation, text semantic matching and voice classification on related datasets. [3] Add the export function APIs for two kinds of model formats, i.,e, ONNX and PaddleInference. [4] Add the support for [BentoML](https://github.com/bentoml/BentoML/), which is a cloud native framework for serving deployment. Users can easily serve pre-trained models from PaddleHub by following the [Tutorial notebooks](https://github.com/PaddlePaddle/PaddleHub/blob/release/v2.1/demo/serving/bentoml/cloud-native-model-serving-with-bentoml.ipynb). Also, see this announcement and [Release note](https://github.com/bentoml/BentoML/releases/tag/v0.12.1) from BentoML. (Many thanks to @[parano](https://github.com/parano) @[cqvu](https://github.com/cqvu) @[deehrlic](https://github.com/deehrlic) for contributing this feature in PaddleHub). [5] The total number of pre-trained models reaches **【300】**.
- **2021.02.18:** The v2.0.0 version is released, making model development and debugging easier, and the finetune task is more flexible and easy to use.The ability to transfer learning for visual tasks is fully upgraded, supporting various tasks such as image classification, image coloring, and style transfer; Transformer models such as BERT, ERNIE, and RoBERTa are upgraded to dynamic graphs, supporting Fine-Tune capabilities for text classification and sequence labeling; Optimize the Serving capability, support multi-card prediction, automatic load balancing, and greatly improve performance; the new automatic data enhancement capability Auto Augment can efficiently search for data enhancement strategy combinations suitable for data sets. 61 new word vector models were added, including 51 Chinese models and 10 English models; add 4 image segmentation models, 2 depth models, 7 image generation models, and 3 text generation models, the total number of pre-trained models reaches **【274】**.
- [【more】](./docs/docs_en/release.md)
### Image Generation
- Including portrait cartoonization, street scene cartoonization, and style transfer.
- Many thanks to CopyRight@[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN)、CopyRight@[AnimeGAN](https://github.com/TachibanaYoshino/AnimeGANv2)for the pre-trained models.
<div align="center">
<img src="./docs/imgs/Readme_Related/ImageGAN.gif" width = "640" height = "600" />
</div>
### Object Detection
- Pedestrian detection, vehicle detection, and more industrial-grade ultra-large-scale pretrained models are provided.
- Many thanks to CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) for the pre-trained models, you can try to train your models with PadddleDetection.
<div align="center">
<img src="./docs/imgs/Readme_Related/Image_ObjectDetection_Pedestrian_Vehicle.gif" width = "642" height = "400" />
</div>
### Key Point Detection
- Support body, face and hands key point detection for single or multiple person.
- Many thanks to CopyRight@[openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose) for the pre-trained models.
## Visualization Demo [[More]](./docs/docs_en/visualization.md)
### **Computer Vision (161 models)**
<div align="center">
<img src="./docs/imgs/Readme_Related/Image_keypoint.gif" width = "642" height = "550" />
<img src="./docs/imgs/Readme_Related/Image_all.gif" width = "530" height = "400" />
</div>
### Image Segmentation
- High quality pixel-level portrait cutout model, ACE2P human body analysis world champion models are provided, Dynamic Sky Replacement and Harmonization.
- Many thanks to CopyRight@[PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg), CopyRight@[Zhengxia Zou](https://github.com/jiupinjia/SkyAR) for the pre-trained models, you can try to retrain your models by paddleseg or sky matting model.
<div align="center">
<img src="./docs/imgs/Readme_Related/ImageSeg_Human.gif" width = "642" height = "400" />
</div>
- Many thanks to CopyRight@[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN)[AnimeGAN](https://github.com/TachibanaYoshino/AnimeGANv2)[openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)[PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg)[Zhengxia Zou](https://github.com/jiupinjia/SkyAR) for the pre-trained models, you can try to train your models with them.
<div align="center">
<img src="./docs/imgs/Readme_Related/9dis.gif" width = "642" height = "200" />
</div>
### **Natural Language Processing (129 models)**
<div align="center">
(The second gif comes from CopyRight@[jiupinjia/SkyAR](https://github.com/jiupinjia/SkyAR#district-9-ship-video-source))
<img src="./docs/imgs/Readme_Related/Text_all.gif" width = "640" height = "240" />
</div>
- Many thanks to CopyRight@[ERNIE](https://github.com/PaddlePaddle/ERNIE)[LAC](https://github.com/baidu/LAC)[DDParser](https://github.com/baidu/DDParser)for the pre-trained models, you can try to train your models with them.
### Image Classification
- Various models like animal classification, dish classification, wild animal product classification are available.
- Many thanks to CopyRight@[PaddleClas](https://github.com/PaddlePaddle/PaddleClas) for the pre-trained models, you can try to train your models with PadddleClas.
<div align="center">
<img src="./docs/imgs/Readme_Related/ImageClas_animal_dish_wild.gif" width = "530" height = "400" />
</div>
### Text Generation
- AI poem writing, AI couplets, AI love words generation models are available.
- Many thanks to CopyRight@[ERNIE](https://github.com/PaddlePaddle/ERNIE) for the pre-trained models, you can try to train your models with ERNIE.
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_Textgen_poetry.gif" width = "850" height = "400" />
</div>
### Lexical Analysis
- Excelent Chinese text segmentation, part-of-speech, named entity recognition model are provided by [LAC](https://github.com/baidu/LAC)@Baidu NLP.
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_Lexical Analysis.png" width = "640" height = "233" />
</div>
### Syntactic Analysis
- Leading Chinese syntactic analysis model are provided by [DDParser](https://github.com/baidu/DDParser)@Baidu NLP.
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_SyntacticAnalysis.png" width = "640" height = "301" />
</div>
### Sentiment Analysis
- All SOTA Chinese sentiment analysis model released by Baidu NLP can be used just one-line of code.
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_SentimentAnalysis.png" width = "640" height = "228" />
</div>
### Text Review
- Text review model of Chinese pornographic text are available.
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_Textreview.png" width = "640" height = "140" />
</div>
### Speech Synthesis
### Speech (3 models)
- TTS speech synthesis algorithm, multiple algorithms are available.
- Many thanks to CopyRight@[Parakeet](https://github.com/PaddlePaddle/Parakeet) for the pre-trained models, you can try to train your models with Parakeet.
- Input: `Life was like a box of chocolates, you never know what you're gonna get.`
......@@ -199,7 +94,7 @@ English | [简体中文](README_ch.md)
</table>
</div>
### Video Classification
### Video (8 models)
- Short video classification trained via large-scale video datasets, supports 3000+ tag types prediction for short Form Videos.
- Many thanks to CopyRight@[PaddleVideo](https://github.com/PaddlePaddle/PaddleVideo) for the pre-trained model, you can try to train your models with PaddleVideo.
- `Example: Input a short video of swimming, the algorithm can output the result of "swimming"`
......@@ -224,49 +119,22 @@ If you have any questions during the use of the model, you can join the official
</div>
If you fail to scan the code, please add WeChat 15704308458 and note "Hub", the operating class will invite you to join the group.
## Documentation Tutorial
- [PIP Installation](./docs/docs_en/get_start/installation.rst)
- Quick Start
- [Python API](./docs/docs_en/get_start/python_use_hub.rst)
- [More Demos](./docs/docs_en/community/more_demos.md)
- Rich Pre-trained Models 300
- [Boutique Featured Models](./docs/docs_en/figures.md)
- Computer Vision 161
- [Image Classification 77 ](./modules/image/classification/README_en.md)
- [Object Detection 13 ](./modules/image/object_detection/README_en.md)
- [Face Detection 7 ](./modules/image/face_detection/README_en.md)
- [Key Point Detection 5 ](./modules/image/keypoint_detection/README_en.md)
- [Image Segmentation 15 ](./modules/image/semantic_segmentation/README_en.md)
- [Text Recognition 9 ](./modules/image/text_recognition/README_en.md)
- [Image Generation 23 ](./modules/image/Image_gan/README_en.md)
- [Image Editing 9 ](./modules/image/Image_editing/README_en.md)
- [Depth Estimation 2 ](./modules/thirdparty/image/depth_estimation)
- [Instance Segmentation 1 ](./modules/image/instance_segmentation/solov2/README.md)
- Natural Language Processing 126
- [Lexical Analysis 2 ](./modules/text/lexical_analysis/README_en.md)
- [Syntactic Analysis 1 ](./modules/text/syntactic_analysis/README_en.md)
- [Sentiment Analysis 7 ](./modules/text/sentiment_analysis/README_en.md)
- [Text Review 3 ](./modules/text/text_review/README_en.md)
- [Text Generation 12 ](./modules/text/text_generation/README_en.md)
- [Semantic Models 40 ](./modules/text/language_model/README_en.md)
- [Word Vector 61](https://www.paddlepaddle.org.cn/hublist)
- Audio 3
- [Speech Synthesis 3 ](./modules/audio/README_en.md)
- Video 8
- [Video Classification 5 ](./modules/video/README_en.md)
- [Video Repair 3 ](https://www.paddlepaddle.org.cn/hublist)
- Industrial Application
- [Meter Readings 2 ](./modules/image/industrial_application/meter_readings/barometer_reader/README.md)
- Deploy
- [One Line of Code Service deployment](./docs/docs_en/tutorial/serving.md)
- [Mobile Device Deployment](https://paddle-lite.readthedocs.io/zh/latest/quick_start/tutorial.html)
- Advanced documentation
- [Command Line Interface Usage](./docs/docs_en/tutorial/cmd_usage.rst)
- Community
- [Join Technical Group](#Welcome_joinus)
- [Contribute Code](./docs/docs_en/community/contribute_code.md)
- [License](#License)
- [Contribution](#Contribution)
<a name="QuickStart"></a>
## QuickStart
```python
!pip install --upgrade paddlepaddle -i https://mirror.baidu.com/pypi/simple
!pip install --upgrade paddlehub -i https://mirror.baidu.com/pypi/simple
import paddlehub as hub
lac = hub.Module(name="lac")
test_text = ["今天是个好天气。"]
results = lac.cut(text=test_text, use_gpu=False, batch_size=1, return_tag=True)
print(results)
#{'word': ['今天', '是', '个', '好天气', '。'], 'tag': ['TIME', 'v', 'q', 'n', 'w']}
```
<a name="License"></a>
## License
......
简体中文 | [English](README.md)
<p align="center">
<img src="./docs/imgs/paddlehub_logo.jpg" align="middle"
</p>
<img src="./docs/imgs/paddlehub_logo.jpg" align="middle">
<p align="center">
<div align="center">
<h3> <a href=#QuickStart> 快速开始 </a> | <a href="https://paddlehub.readthedocs.io/zh_CN/release-v2.1//"> 教程文档 </a> | <a href="https://www.paddlepaddle.org.cn/hublist/"> 模型搜索 </a> | <a href="https://www.paddlepaddle.org.cn/hub/"> 演示Demo </a>
</h3>
</div>
------------------------------------------------------------------------------------------
......@@ -22,154 +26,45 @@
</p>
## 简介
- PaddleHub旨在为开发者提供丰富的、高质量的、直接可用的预训练模型。
- **【无需深度学习背景、无需数据与训练过程】**,可快速使用AI模型,享受人工智能时代红利。
- 涵盖CV、NLP、Audio、Video、工业应用主流五大品类,支持**一键预测****一键服务化部署****快速迁移学习**
- 全部模型开源下载,**离线可运行**
## 近期更新
- **2021.04.27**,发布v2.1.0版本。**【模型部分能力升级】**,新模型支持:新增基于VOC数据集的高精度语义分割模型2个,语音分类模型3个。迁移学习能力升级:新增图像语义分割、文本语义匹配、语音分类等相关任务的Fine-Tune能力以及相关任务数据集。**【部署能力重要升级】**,完善部署能力:新增ONNX和PaddleInference等模型格式的导出功能。**重要开源生态合作:** 新增[BentoML](https://github.com/bentoml/BentoML) 云原生服务化部署能力,可以支持统一的多框架模型管理和模型部署的工作流,[详细教程](https://github.com/PaddlePaddle/PaddleHub/blob/release/v2.1/demo/serving/bentoml/cloud-native-model-serving-with-bentoml.ipynb). 更多内容可以参考BentoML 最新 v0.12.1 [Releasenote](https://github.com/bentoml/BentoML/releases/tag/v0.12.1).(感谢@[parano](https://github.com/parano) @[cqvu](https://github.com/cqvu) @[deehrlic](https://github.com/deehrlic))的贡献与支持。**【BUG修复】** [#7da1230](https://github.com/PaddlePaddle/PaddleHub/commit/7da12302dd77e3d739da72821d41715ad8a7c79c) 修复了模型未记录评估指标时无法恢复训练的问题。[#b0b3144](https://github.com/PaddlePaddle/PaddleHub/commit/b0b3144eff34e47cac8fc450c8b7cb6c557f9b84) 修复了评估过程出现异常时线程没有正常退出的问题。[#30aace4](https://github.com/PaddlePaddle/PaddleHub/commit/30aace46414bbeef02beb75b7128f48fada82150) 优化模型安装流程,提升易用性。预训练模型总量达到[**【300】**](https://www.paddlepaddle.org.cn/hublist)个。
- **2021.02.18**,发布v2.0.0版本,模型开发调试更简单,finetune接口更加灵活易用。视觉类任务迁移学习能力全面升级,支持[图像分类](./demo/image_classification/README.md)[图像着色](./demo/colorization/README.md)[风格迁移](./demo/style_transfer/README.md)等多种任务;BERT、ERNIE、RoBERTa等Transformer类模型升级至动态图,支持[文本分类](./demo/text_classification/README.md)[序列标注](./demo/sequence_labeling/README.md)的Fine-Tune能力;优化服务化部署Serving能力,支持多卡预测、自动负载均衡,性能大幅度提升;新增自动数据增强能力[Auto Augment](./demo/autoaug/README.md),能高效地搜索适合数据集的数据增强策略组合。新增[词向量模型](./modules/text/embedding)61个,其中包含中文模型51个,英文模型10个;新增[图像分割](./modules/thirdparty/image/semantic_segmentation)模型4个、[深度模型](./modules/thirdparty/image/depth_estimation)2个、[图像生成](./modules/thirdparty/image/Image_gan/style_transfer)模型7个、[文本生成](./modules/thirdparty/text/text_generation)模型3个。预训练模型总量达到[**【274】**](https://www.paddlepaddle.org.cn/hublist) 个。
- **2020.11.20**,发布2.0-beta版本,全面迁移动态图编程模式,服务化部署Serving能力升级;新增手部关键点检测1个、图像动漫化类12个、图片编辑类3个,语音合成类3个,句法分析1个,预训练模型总量到达 **【182】** 个。
- **2020.10.09**,新增OCR多语言系列模型4个,图像编辑模型4个,预训练模型总量到达 **【162】** 个。
- **2020.09.27**,新增文本生成模型6个,图像分割模型1个,预训练模型总量到达 **【154】** 个。
- **2020.08.13**,发布v1.8.1,新增人像分割模型Humanseg,支持EMNLP2019-Sentence-BERT作为文本匹配任务网络,预训练模型总量到达 **【147】** 个。
- **2020.07.29**,发布v1.8.0,新增AI对联和AI写诗、jieba切词,文本数据LDA、语义相似度计算,新增目标检测,短视频分类模型,超轻量中英文OCR,新增行人检测、车辆检测、动物识别等工业级模型,支持VisualDL可视化训练,预训练模型总量到达 **【135】** 个。
- [More](./docs/docs_ch/release.md)
## [特性](./docs/docs_ch/figures.md)
- **【丰富的预训练模型】**:涵盖CV、NLP、Audio、Video、工业应用主流五大品类的 300+ 预训练模型,全部开源下载,离线可运行。
## 简介与特性
- PaddleHub旨在为开发者提供丰富的、高质量的、直接可用的预训练模型。
- **【模型种类丰富】**: 涵盖CV、NLP、Audio、Video、工业应用主流五大品类的 300+ 预训练模型,全部开源下载,离线可运行。
- **【超低使用门槛】**:无需深度学习背景、无需数据与训练过程,可快速使用AI模型,
- **【一键模型快速预测】**:通过一行命令行或者极简的Python API实现模型调用,可快速体验模型效果。
- **【一键模型转服务化】**:一行命令,搭建深度学习模型API服务化部署能力。
- **【十行代码迁移学习】**:十行代码完成图片分类、文本分类的迁移学习任务
- **【跨平台兼容性】**:可运行于Linux、Windows、MacOS等多种操作系统
## 近期更新
- **2021.04.27**,发布v2.1.0版本。【1】新增基于VOC数据集的高精度语义分割模型2个,语音分类模型3个。【2】新增图像语义分割、文本语义匹配、语音分类等相关任务的Fine-Tune能力以及相关任务数据集;完善部署能力:【3】新增ONNX和PaddleInference等模型格式的导出功能。【4】新增[BentoML](https://github.com/bentoml/BentoML) 云原生服务化部署能力,可以支持统一的多框架模型管理和模型部署的工作流,[详细教程](https://github.com/PaddlePaddle/PaddleHub/blob/release/v2.1/demo/serving/bentoml/cloud-native-model-serving-with-bentoml.ipynb). 更多内容可以参考BentoML 最新 v0.12.1 [Releasenote](https://github.com/bentoml/BentoML/releases/tag/v0.12.1).(感谢@[parano](https://github.com/parano) @[cqvu](https://github.com/cqvu) @[deehrlic](https://github.com/deehrlic))的贡献与支持。【5】预训练模型总量达到[**【300】**](https://www.paddlepaddle.org.cn/hublist)个。
- **2021.02.18**,发布v2.0.0版本,模型开发调试更简单,finetune接口更加灵活易用。视觉类任务迁移学习能力全面升级,支持[图像分类](./demo/image_classification/README.md)[图像着色](./demo/colorization/README.md)[风格迁移](./demo/style_transfer/README.md)等多种任务;BERT、ERNIE、RoBERTa等Transformer类模型升级至动态图,支持[文本分类](./demo/text_classification/README.md)[序列标注](./demo/sequence_labeling/README.md)的Fine-Tune能力;优化服务化部署Serving能力,支持多卡预测、自动负载均衡,性能大幅度提升;新增自动数据增强能力[Auto Augment](./demo/autoaug/README.md),能高效地搜索适合数据集的数据增强策略组合。新增[词向量模型](./modules/text/embedding)61个,其中包含中文模型51个,英文模型10个;新增[图像分割](./modules/thirdparty/image/semantic_segmentation)模型4个、[深度模型](./modules/thirdparty/image/depth_estimation)2个、[图像生成](./modules/thirdparty/image/Image_gan/style_transfer)模型7个、[文本生成](./modules/thirdparty/text/text_generation)模型3个。预训练模型总量达到[**【274】**](https://www.paddlepaddle.org.cn/hublist) 个。
- [More](./docs/docs_ch/release.md)
## 精品模型效果展示
### 文本识别
- 包含超轻量中英文OCR模型,高精度中英文、多语种德语、法语、日语、韩语OCR识别。
- 感谢CopyRight@[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="./docs/imgs/Readme_Related/Image_Ocr.gif" width = "800" height = "400" />
</div>
### 人脸检测
- 包含人脸检测,口罩人脸检测,多种算法可选。
- 感谢CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="./docs/imgs/Readme_Related/Image_ObjectDetection_Face_Mask.gif" width = "588" height = "400" />
</div>
### 图像编辑
- 4倍超分效果,多种超分算法可选。
- 黑白图片上色,可用于老旧照片修复,
- 感谢CopyRight@[PaddleGan](https://github.com/PaddlePaddle/PaddleGan)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<table>
<thead>
</thead>
<tbody>
<tr>
<th>图像超分辨率 </th>
<th>黑白图片上色 </th>
</tr>
<tr>
<th>
<a>
<img src="./docs/imgs/Readme_Related/ImageEdit_SuperResolution.gif" width = "266" height = "400" /></a><br>
</th>
<th>
<a>
<img src="./docs/imgs/Readme_Related/ImageEdit_Restoration.gif" width = "300" height = "400" /></a><br>
</th>
</tr>
</tbody>
</table>
</div>
### 图像生成
- 包含人像动漫化、街景动漫化、风格迁移。
- 感谢CopyRight@[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN)、CopyRight@[AnimeGAN](https://github.com/TachibanaYoshino/AnimeGANv2)提供预训练模型。
<div align="center">
<img src="./docs/imgs/Readme_Related/ImageGAN.gif" width = "640" height = "600" />
</div>
### 目标检测
- 包含行人检测、车辆检测,更有工业级超大规模预训练模型可选。--
- 感谢CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="./docs/imgs/Readme_Related/Image_ObjectDetection_Pedestrian_Vehicle.gif" width = "642" height = "400" />
</div>
### 关键点检测
- 包含单人、多人身体关键点检测、面部关键点检测、手部关键点检测。
- 感谢CopyRight@[openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)开源预训练模型。
<div align="center">
<img src="./docs/imgs/Readme_Related/Image_keypoint.gif" width = "642" height = "550" />
</div>
### 图像分割
- 包含效果卓越的人像抠图模型、ACE2P人体解析世界冠军模型、动态天空置换算法
- 感谢CopyRight@[PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg)、感谢CopyRight@[Zhengxia Zou](https://github.com/jiupinjia/SkyAR)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="./docs/imgs/Readme_Related/ImageSeg_Human.gif" width = "642" height = "400" />
</div>
<div align="center">
<img src="./docs/imgs/Readme_Related/9dis.gif" width = "642" height = "200" />
</div>
<div align="center">
(第二张动图来自于CopyRight@[jiupinjia/SkyAR](https://github.com/jiupinjia/SkyAR#district-9-ship-video-source))
</div>
## **精品模型效果展示[【更多】](./docs/docs_ch/visualization.md)**
### 图像分类
- 包含动物分类、菜品分类、野生动物制品分类,多种算法可选
- 感谢CopyRight@[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)提供预训练模型,训练能力开放,欢迎体验。
### **图像类(161个)**
<div align="center">
<img src="./docs/imgs/Readme_Related/ImageClas_animal_dish_wild.gif" width = "530" height = "400" />
<img src="./docs/imgs/Readme_Related/Image_all.gif" width = "530" height = "400" />
</div>
### 文本生成
- 包含AI写诗、AI对联、AI情话、AI藏头诗,多种算法可选。
- 感谢CopyRight@[ERNIE](https://github.com/PaddlePaddle/ERNIE)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_Textgen_poetry.gif" width = "850" height = "400" />
</div>
- 感谢CopyRight@[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN)[AnimeGAN](https://github.com/TachibanaYoshino/AnimeGANv2)[openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)[PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg)[Zhengxia Zou](https://github.com/jiupinjia/SkyAR) 提供相关预训练模型,训练能力开放,欢迎体验。
### 词法分析
- 效果优秀的中文分词、词性标注与命名实体识别的模型。
- 感谢CopyRight@[LAC](https://github.com/baidu/LAC)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_Lexical Analysis.png" width = "640" height = "233" />
</div>
### 句法分析
- 效果领先的中文句法分析模型。
- 感谢CopyRight@[DDParser](https://github.com/baidu/DDParser)提供预训练模型,训练能力开放,欢迎体验。
### **文本类(129个)**
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_SyntacticAnalysis.png" width = "640" height = "301" />
<img src="./docs/imgs/Readme_Related/Text_all.gif" width = "640" height = "240" />
</div>
### 情感分析
- 支持中文的评论情感分析
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_SentimentAnalysis.png" width = "640" height = "228" />
</div>
- 感谢CopyRight@[ERNIE](https://github.com/PaddlePaddle/ERNIE)[LAC](https://github.com/baidu/LAC)[DDParser](https://github.com/baidu/DDParser)提供相关预训练模型,训练能力开放,欢迎体验。
### 文本审核
- 包含中文色情文本的审核,多种算法可选。
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_Textreview.png" width = "640" height = "140" />
</div>
### 语音合成
### **语音类(3个)**
- TTS语音合成算法,多种算法可选
- 感谢CopyRight@[Parakeet](https://github.com/PaddlePaddle/Parakeet)提供预训练模型,训练能力开放,欢迎体验。
- 输入:`Life was like a box of chocolates, you never know what you're gonna get.`
......@@ -202,7 +97,7 @@
</table>
</div>
### 视频分类
### **视频类(8个)**
- 包含短视频分类,支持3000+标签种类,可输出TOP-K标签,多种算法可选。
- 感谢CopyRight@[PaddleVideo](https://github.com/PaddlePaddle/PaddleVideo)提供预训练模型,训练能力开放,欢迎体验。
- `举例:输入一段游泳的短视频,算法可以输出"游泳"结果`
......@@ -210,6 +105,9 @@
<img src="./docs/imgs/Readme_Related/Text_Video.gif" width = "400" height = "400" />
</div>
## ===划重点===
- 以上所有预训练模型全部开源,模型数量持续更新,欢迎**⭐Star⭐**关注。
<div align="center">
......@@ -225,53 +123,27 @@
</div>
如扫码失败,请添加微信15704308458,并备注“Hub”,运营同学会邀请您入群。
<div id="QuickStart">
## 快速开始
</div>
```python
!pip install --upgrade paddlepaddle -i https://mirror.baidu.com/pypi/simple
!pip install --upgrade paddlehub -i https://mirror.baidu.com/pypi/simple
import paddlehub as hub
lac = hub.Module(name="lac")
test_text = ["今天是个好天气。"]
results = lac.cut(text=test_text, use_gpu=False, batch_size=1, return_tag=True)
print(results)
#{'word': ['今天', '是', '个', '好天气', '。'], 'tag': ['TIME', 'v', 'q', 'n', 'w']}
```
## 文档教程
- [PIP安装](./docs/docs_ch/get_start/installation.rst)
- 快速开始
- [Python API调用](./docs/docs_ch/get_start/python_use_hub.rst)
- [示例体验项目demo](./docs/docs_ch/community/more_demos.md)
- 丰富的预训练模型 274
- [精品特色模型](./docs/docs_ch/figures.md)
- 计算机视觉 161 个
- [图像分类 77 个](./modules/image/classification/README.md)
- [目标检测 13 个](./modules/image/object_detection/README.md)
- [人脸检测 7 个](./modules/image/face_detection/README.md)
- [关键点检测 5 个](./modules/image/keypoint_detection/README.md)
- [图像分割 15 个](./modules/image/semantic_segmentation/README.md)
- [文本识别 9 个](./modules/image/text_recognition/README.md)
- [图像生成 23 个](./modules/image/Image_gan/README.md)
- [图像编辑 9 个](./modules/image/Image_editing/README.md)
- [深度估计 2 个](./modules/thirdparty/image/depth_estimation)
- [实例分割 1 个](./modules/image/instance_segmentation/solov2/README.md)
- 自然语言处理 126 个
- [词法分析 2 个](./modules/text/lexical_analysis/README.md)
- [句法分析 1 个](./modules/text/syntactic_analysis/README.md)
- [情感分析 7 个](./modules/text/sentiment_analysis/README.md)
- [文本审核 3 个](./modules/text/text_review/README.md)
- [文本生成 12 个](./modules/text/text_generation/README.md)
- [语义模型 40 个](./modules/text/language_model/README.md)
- [词向量 61 个](https://www.paddlepaddle.org.cn/hublist)
- 语音 3 个
- [语音合成 3 个](./modules/audio/README.md)
- 视频8个
- [视频分类 5 个](./modules/video/README.md)
- [视频修复 3 个](https://www.paddlepaddle.org.cn/hublist)
- 工业应用 2 个
- [表计识别 2 个](./modules/image/industrial_application/meter_readings/barometer_reader/README.md)
- 部署
- [一行代码服务化部署](./docs/docs_ch/tutorial/serving.md)
- [移动端 Lite 部署(跳转Lite教程)](https://paddle-lite.readthedocs.io/zh/latest/quick_start/tutorial.html)
- 进阶文档
- [命令行工具详解](./docs/docs_ch/tutorial/cmd_usage.rst)
- 社区交流
- [加入技术交流群](#欢迎加入PaddleHub技术交流群)
- [贡献代码](./docs/docs_ch/contribution/contribute_code.md)
- [FAQ](./docs/docs_ch/faq.md)
- [更新历史](./docs/docs_ch/release.md)
- [许可证书](#许可证书)
- [致谢](#致谢)
<a name="许可证书"></a>
......
## 精品模型效果展示
### 文本识别
- 包含超轻量中英文OCR模型,高精度中英文、多语种德语、法语、日语、韩语OCR识别。
- 感谢CopyRight@[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="../imgs/Readme_Related/Image_Ocr.gif" width = "800" height = "400" />
</div>
### 人脸检测
- 包含人脸检测,口罩人脸检测,多种算法可选。
- 感谢CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="../imgs/Readme_Related/Image_ObjectDetection_Face_Mask.gif" width = "588" height = "400" />
</div>
### 图像编辑
- 4倍超分效果,多种超分算法可选。
- 黑白图片上色,可用于老旧照片修复,
- 感谢CopyRight@[PaddleGan](https://github.com/PaddlePaddle/PaddleGan)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<table>
<thead>
</thead>
<tbody>
<tr>
<th>图像超分辨率 </th>
<th>黑白图片上色 </th>
</tr>
<tr>
<th>
<a>
<img src="../imgs/Readme_Related/ImageEdit_SuperResolution.gif" width = "266" height = "400" /></a><br>
</th>
<th>
<a>
<img src="../imgs/Readme_Related/ImageEdit_Restoration.gif" width = "300" height = "400" /></a><br>
</th>
</tr>
</tbody>
</table>
</div>
### 图像生成
- 包含人像动漫化、街景动漫化、风格迁移。
- 感谢CopyRight@[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN)、CopyRight@[AnimeGAN](https://github.com/TachibanaYoshino/AnimeGANv2)提供预训练模型。
<div align="center">
<img src="../imgs/Readme_Related/ImageGAN.gif" width = "640" height = "600" />
</div>
### 目标检测
- 包含行人检测、车辆检测,更有工业级超大规模预训练模型可选。--
- 感谢CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="../imgs/Readme_Related/Image_ObjectDetection_Pedestrian_Vehicle.gif" width = "642" height = "400" />
</div>
### 关键点检测
- 包含单人、多人身体关键点检测、面部关键点检测、手部关键点检测。
- 感谢CopyRight@[openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)开源预训练模型。
<div align="center">
<img src="../imgs/Readme_Related/Image_keypoint.gif" width = "642" height = "550" />
</div>
### 图像分割
- 包含效果卓越的人像抠图模型、ACE2P人体解析世界冠军模型、动态天空置换算法
- 感谢CopyRight@[PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg)、感谢CopyRight@[Zhengxia Zou](https://github.com/jiupinjia/SkyAR)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="../imgs/Readme_Related/ImageSeg_Human.gif" width = "642" height = "400" />
</div>
<div align="center">
<img src="../imgs/Readme_Related/9dis.gif" width = "642" height = "200" />
</div>
<div align="center">
(第二张动图来自于CopyRight@[jiupinjia/SkyAR](https://github.com/jiupinjia/SkyAR#district-9-ship-video-source))
</div>
### 图像分类
- 包含动物分类、菜品分类、野生动物制品分类,多种算法可选
- 感谢CopyRight@[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="../imgs/Readme_Related/ImageClas_animal_dish_wild.gif" width = "530" height = "400" />
</div>
### 文本生成
- 包含AI写诗、AI对联、AI情话、AI藏头诗,多种算法可选。
- 感谢CopyRight@[ERNIE](https://github.com/PaddlePaddle/ERNIE)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="../imgs/Readme_Related/Text_Textgen_poetry.gif" width = "850" height = "400" />
</div>
### 词法分析
- 效果优秀的中文分词、词性标注与命名实体识别的模型。
- 感谢CopyRight@[LAC](https://github.com/baidu/LAC)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="../imgs/Readme_Related/Text_Lexical Analysis.png" width = "640" height = "233" />
</div>
### 句法分析
- 效果领先的中文句法分析模型。
- 感谢CopyRight@[DDParser](https://github.com/baidu/DDParser)提供预训练模型,训练能力开放,欢迎体验。
<div align="center">
<img src="../imgs/Readme_Related/Text_SyntacticAnalysis.png" width = "640" height = "301" />
</div>
### 情感分析
- 支持中文的评论情感分析
<div align="center">
<img src="../imgs/Readme_Related/Text_SentimentAnalysis.png" width = "640" height = "228" />
</div>
### 文本审核
- 包含中文色情文本的审核,多种算法可选。
<div align="center">
<img src="../imgs/Readme_Related/Text_Textreview.png" width = "640" height = "140" />
</div>
### 语音合成
- TTS语音合成算法,多种算法可选
- 感谢CopyRight@[Parakeet](https://github.com/PaddlePaddle/Parakeet)提供预训练模型,训练能力开放,欢迎体验。
- 输入:`Life was like a box of chocolates, you never know what you're gonna get.`
- 合成效果如下:
<div align="center">
<table>
<thead>
</thead>
<tbody>
<tr>
<th>deepvoice3 </th>
<th>fastspeech </th>
<th>transformer</th>
</tr>
<tr>
<th>
<a href="https://paddlehub.bj.bcebos.com/resources/deepvoice3_ljspeech-0.wav">
<img src="../imgs/Readme_Related/audio_icon.png" width=250 /></a><br>
</th>
<th>
<a href="https://paddlehub.bj.bcebos.com/resources/fastspeech_ljspeech-0.wav">
<img src="../imgs/Readme_Related/audio_icon.png" width=250 /></a><br>
</th>
<th>
<a href="https://paddlehub.bj.bcebos.com/resources/transformer_tts_ljspeech-0.wav">
<img src="../imgs/Readme_Related/audio_icon.png" width=250 /></a><br>
</th>
</tr>
</tbody>
</table>
</div>
### 视频分类
- 包含短视频分类,支持3000+标签种类,可输出TOP-K标签,多种算法可选。
- 感谢CopyRight@[PaddleVideo](https://github.com/PaddlePaddle/PaddleVideo)提供预训练模型,训练能力开放,欢迎体验。
- `举例:输入一段游泳的短视频,算法可以输出"游泳"结果`
<div align="center">
<img src="../imgs/Readme_Related/Text_Video.gif" width = "400" height = "400" />
</div>
### Text Recognition
- Contain ultra-lightweight Chinese and English OCR models, high-precision Chinese and English, multilingual German, French, Japanese, Korean OCR recognition.
- Many thanks to CopyRight@[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) for the pre-trained models, you can try to train your models with PadddleOCR.
<div align="center">
<img src="../imgs/Readme_Related/Image_Ocr.gif" width = "800" height = "400" />
</div>
### Face Detection
- Including face detection, mask face detection, multiple algorithms are optional.
- Many thanks to CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) for the pre-trained models, you can try to train your models with PadddleDetection.
<div align="center">
<img src="../imgs/Readme_Related/Image_ObjectDetection_Face_Mask.gif" width = "588" height = "400" />
</div>
### Image Editing
- 4x super resolution effect, multiple super resolution models are optional.
- Colorization models can be used to repair old grayscale photos.
- Many thanks to CopyRight@[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN) for the pre-trained models, you can try to train your models with PadddleGAN.
<div align="center">
<table>
<thead>
</thead>
<tbody>
<tr>
<th>SuperResolution </th>
<th>Restoration </th>
</tr>
<tr>
<th>
<a>
<img src="../imgs/Readme_Related/ImageEdit_SuperResolution.gif" width = "266" height = "400" /></a><br>
</th>
<th>
<a>
<img src="../imgs/Readme_Related/ImageEdit_Restoration.gif" width = "300" height = "400" /></a><br>
</th>
</tr>
</tbody>
</table>
</div>
### Image Generation
- Including portrait cartoonization, street scene cartoonization, and style transfer.
- Many thanks to CopyRight@[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN)、CopyRight@[AnimeGAN](https://github.com/TachibanaYoshino/AnimeGANv2)for the pre-trained models.
<div align="center">
<img src="../imgs/Readme_Related/ImageGAN.gif" width = "640" height = "600" />
</div>
### Object Detection
- Pedestrian detection, vehicle detection, and more industrial-grade ultra-large-scale pretrained models are provided.
- Many thanks to CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) for the pre-trained models, you can try to train your models with PadddleDetection.
<div align="center">
<img src="../imgs/Readme_Related/Image_ObjectDetection_Pedestrian_Vehicle.gif" width = "642" height = "400" />
</div>
### Key Point Detection
- Support body, face and hands key point detection for single or multiple person.
- Many thanks to CopyRight@[openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose) for the pre-trained models.
<div align="center">
<img src="../imgs/Readme_Related/Image_keypoint.gif" width = "642" height = "550" />
</div>
### Image Segmentation
- High quality pixel-level portrait cutout model, ACE2P human body analysis world champion models are provided, Dynamic Sky Replacement and Harmonization.
- Many thanks to CopyRight@[PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg), CopyRight@[Zhengxia Zou](https://github.com/jiupinjia/SkyAR) for the pre-trained models, you can try to retrain your models by paddleseg or sky matting model.
<div align="center">
<img src="../imgs/Readme_Related/ImageSeg_Human.gif" width = "642" height = "400" />
</div>
<div align="center">
<img src="../imgs/Readme_Related/9dis.gif" width = "642" height = "200" />
</div>
<div align="center">
(The second gif comes from CopyRight@[jiupinjia/SkyAR](https://github.com/jiupinjia/SkyAR#district-9-ship-video-source))
</div>
### Image Classification
- Various models like animal classification, dish classification, wild animal product classification are available.
- Many thanks to CopyRight@[PaddleClas](https://github.com/PaddlePaddle/PaddleClas) for the pre-trained models, you can try to train your models with PadddleClas.
<div align="center">
<img src="../imgs/Readme_Related/ImageClas_animal_dish_wild.gif" width = "530" height = "400" />
</div>
### Text Generation
- AI poem writing, AI couplets, AI love words generation models are available.
- Many thanks to CopyRight@[ERNIE](https://github.com/PaddlePaddle/ERNIE) for the pre-trained models, you can try to train your models with ERNIE.
<div align="center">
<img src="../imgs/Readme_Related/Text_Textgen_poetry.gif" width = "850" height = "400" />
</div>
### Lexical Analysis
- Excelent Chinese text segmentation, part-of-speech, named entity recognition model are provided by [LAC](https://github.com/baidu/LAC)@Baidu NLP.
<div align="center">
<img src="../imgs/Readme_Related/Text_Lexical Analysis.png" width = "640" height = "233" />
</div>
### Syntactic Analysis
- Leading Chinese syntactic analysis model are provided by [DDParser](https://github.com/baidu/DDParser)@Baidu NLP.
<div align="center">
<img src="../imgs/Readme_Related/Text_SyntacticAnalysis.png" width = "640" height = "301" />
</div>
### Sentiment Analysis
- All SOTA Chinese sentiment analysis model released by Baidu NLP can be used just one-line of code.
<div align="center">
<img src="../imgs/Readme_Related/Text_SentimentAnalysis.png" width = "640" height = "228" />
</div>
### Text Review
- Text review model of Chinese pornographic text are available.
<div align="center">
<img src="../imgs/Readme_Related/Text_Textreview.png" width = "640" height = "140" />
</div>
### Speech Synthesis
- TTS speech synthesis algorithm, multiple algorithms are available.
- Many thanks to CopyRight@[Parakeet](https://github.com/PaddlePaddle/Parakeet) for the pre-trained models, you can try to train your models with Parakeet.
- Input: `Life was like a box of chocolates, you never know what you're gonna get.`
- The synthesis effect is as follows:
<div align="center">
<table>
<thead>
</thead>
<tbody>
<tr>
<th>deepvoice3 </th>
<th>fastspeech </th>
<th>transformer</th>
</tr>
<tr>
<th>
<a href="https://paddlehub.bj.bcebos.com/resources/deepvoice3_ljspeech-0.wav">
<img src="../imgs/Readme_Related/audio_icon.png" width=250 /></a><br>
</th>
<th>
<a href="https://paddlehub.bj.bcebos.com/resources/fastspeech_ljspeech-0.wav">
<img src="../imgs/Readme_Related/audio_icon.png" width=250 /></a><br>
</th>
<th>
<a href="https://paddlehub.bj.bcebos.com/resources/transformer_tts_ljspeech-0.wav">
<img src="../imgs/Readme_Related/audio_icon.png" width=250 /></a><br>
</th>
</tr>
</tbody>
</table>
</div>
### Video Classification
- Short video classification trained via large-scale video datasets, supports 3000+ tag types prediction for short Form Videos.
- Many thanks to CopyRight@[PaddleVideo](https://github.com/PaddlePaddle/PaddleVideo) for the pre-trained model, you can try to train your models with PaddleVideo.
- `Example: Input a short video of swimming, the algorithm can output the result of "swimming"`
<div align="center">
<img src="../imgs/Readme_Related/Text_Video.gif" width = "400" height = "400" />
</div>
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册