Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
6a3e9145
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6a3e9145
编写于
3月 05, 2019
作者:
W
wuzewu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add image classfication demo
上级
90252883
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
5676 addition
and
0 deletion
+5676
-0
demo/image-classification/create_module.sh
demo/image-classification/create_module.sh
+25
-0
demo/image-classification/finetune.sh
demo/image-classification/finetune.sh
+44
-0
demo/image-classification/infer.py
demo/image-classification/infer.py
+40
-0
demo/image-classification/nets/__init__.py
demo/image-classification/nets/__init__.py
+4
-0
demo/image-classification/nets/mobilenet_v2.py
demo/image-classification/nets/mobilenet_v2.py
+170
-0
demo/image-classification/nets/resnet.py
demo/image-classification/nets/resnet.py
+122
-0
demo/image-classification/nohup.out
demo/image-classification/nohup.out
+4310
-0
demo/image-classification/pretraind_models/download_model.sh
demo/image-classification/pretraind_models/download_model.sh
+35
-0
demo/image-classification/reader.py
demo/image-classification/reader.py
+188
-0
demo/image-classification/retrain.py
demo/image-classification/retrain.py
+128
-0
demo/image-classification/test.py
demo/image-classification/test.py
+57
-0
demo/image-classification/train.py
demo/image-classification/train.py
+321
-0
demo/image-classification/train.sh
demo/image-classification/train.sh
+33
-0
demo/image-classification/utility.py
demo/image-classification/utility.py
+63
-0
demo/image-classification/utils/__init__.py
demo/image-classification/utils/__init__.py
+2
-0
demo/image-classification/utils/fp16_utils.py
demo/image-classification/utils/fp16_utils.py
+83
-0
demo/image-classification/utils/learning_rate.py
demo/image-classification/utils/learning_rate.py
+51
-0
未找到文件。
demo/image-classification/create_module.sh
0 → 100644
浏览文件 @
6a3e9145
#!/bin/bash
set
-o
nounset
set
-o
errexit
script_path
=
$(
cd
`
dirname
$0
`
;
pwd
)
cd
$script_path
model_name
=
"ResNet50"
hub_module_save_dir
=
"./hub_module"
while
getopts
"m:d:"
options
do
case
"
$options
"
in
d
)
hub_module_save_dir
=
$OPTARG
;;
m
)
model_name
=
$OPTARG
;;
?
)
echo
"unknown options"
exit
1
;;
esac
done
sh pretraind_models/download_model.sh
${
model_name
}
python train.py
--create_module
=
True
--pretrained_model
=
pretraind_models/
${
model_name
}
--model
${
model_name
}
--use_gpu
=
False
demo/image-classification/finetune.sh
0 → 100644
浏览文件 @
6a3e9145
#!/bin/bash
set
-o
nounset
set
-o
errexit
script_path
=
$(
cd
`
dirname
$0
`
;
pwd
)
cd
$script_path
hub_module_path
=
hub_module_ResNet50
data_dir
=
dataset
batch_size
=
32
use_gpu
=
False
num_epochs
=
20
class_dim
=
2
learning_rate
=
0.001
model_save_dir
=
model_save/
`
date
+%Y%m%d%H%M%S
`
while
getopts
"b:c:d:gh:l:n:"
options
do
case
"
$options
"
in
b
)
batch_size
=
$OPTARG
;;
c
)
class_dim
=
$OPTARG
;;
d
)
data_dir
=
$OPTARG
;;
g
)
use_gpu
=
True
;;
h
)
hub_module_path
=
$OPTARG
;;
l
)
learning_rate
=
$OPTARG
;;
n
)
num_epochs
=
$OPTARG
;;
s
)
model_save_dir
=
$OPTARG
;;
?
)
echo
"unknown options"
exit
1
;;
esac
done
mkdir
-p
${
model_save_dir
}
python retrain.py
--batch_size
=
${
batch_size
}
--class_dim
=
${
class_dim
}
--data_dir
=
${
data_dir
}
--use_gpu
=
${
use_gpu
}
--hub_module_path
${
hub_module_path
}
--lr
${
learning_rate
}
--num_epochs
=
${
num_epochs
}
--model_save_dir
=
${
model_save_dir
}
# nohup python retrain.py --batch_size=${batch_size} --class_dim=${class_dim} --data_dir=${data_dir} --use_gpu=${use_gpu} --hub_module_path ${hub_module_path} --lr ${learning_rate} --num_epochs=${num_epochs} --model_save_dir=${model_save_dir} > ${model_save_dir}/train.log 2>&1 &
demo/image-classification/infer.py
0 → 100644
浏览文件 @
6a3e9145
#-*- coding:utf8 -*-
import
paddle
import
paddle.fluid
as
fluid
import
paddle_hub
as
hub
import
paddle_hub.module
as
module
import
paddle_hub.logger
as
log
import
sys
import
numpy
as
np
import
reader
import
argparse
import
functools
from
visualdl
import
LogWriter
from
utility
import
add_arguments
,
print_arguments
reader
=
paddle
.
batch
(
reader
.
test
(
"dataset"
),
batch_size
=
1
)
def
infer
():
model
=
module
.
Module
(
module_dir
=
"hub_module_ResNet50"
)
feed_list
,
fetch_list
,
program
=
model
(
sign_name
=
"feature_map"
,
trainable
=
True
)
with
fluid
.
program_guard
(
main_program
=
program
):
img
=
feed_list
[
0
]
feature_map
=
fetch_list
[
0
]
fc
=
fluid
.
layers
.
fc
(
input
=
feature_map
,
size
=
2
,
act
=
"softmax"
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
],
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
batch
in
reader
():
print
(
batch
[
0
][
0
].
shape
)
eval_val
=
exe
.
run
(
fetch_list
=
[
fc
.
name
],
feed
=
feeder
.
feed
(
batch
))
log
.
logger
.
info
(
eval_val
)
input
()
infer
()
demo/image-classification/nets/__init__.py
0 → 100644
浏览文件 @
6a3e9145
from
.mobilenet_v2
import
MobileNetV2
from
.resnet
import
ResNet50
,
ResNet101
,
ResNet152
__all__
=
[
"MobileNetV2"
,
"ResNet50"
,
"ResNet101"
,
"ResNet152"
]
demo/image-classification/nets/mobilenet_v2.py
0 → 100644
浏览文件 @
6a3e9145
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
"MobileNetV2"
]
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
MobileNetV2
():
def
__init__
(
self
):
self
.
params
=
train_parameters
def
net
(
self
,
input
,
class_dim
=
1000
,
scale
=
1.0
):
bottleneck_params_list
=
[
(
1
,
16
,
1
,
1
),
(
6
,
24
,
2
,
2
),
(
6
,
32
,
3
,
2
),
(
6
,
64
,
4
,
2
),
(
6
,
96
,
3
,
1
),
(
6
,
160
,
3
,
2
),
(
6
,
320
,
1
,
1
),
]
input
=
self
.
conv_bn_layer
(
input
,
num_filters
=
int
(
32
*
scale
),
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
if_act
=
True
)
in_c
=
int
(
32
*
scale
)
for
layer_setting
in
bottleneck_params_list
:
t
,
c
,
n
,
s
=
layer_setting
input
=
self
.
invresi_blocks
(
input
=
input
,
in_c
=
in_c
,
t
=
t
,
c
=
int
(
c
*
scale
),
n
=
n
,
s
=
s
,
)
in_c
=
int
(
c
*
scale
)
input
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
int
(
1280
*
scale
)
if
scale
>
1.0
else
1280
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
if_act
=
True
)
input
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
7
,
pool_stride
=
1
,
pool_type
=
'avg'
,
global_pooling
=
True
)
output
=
fluid
.
layers
.
fc
(
input
=
input
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
()))
return
output
,
input
def
conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
channels
=
None
,
num_groups
=
1
,
use_cudnn
=
True
,
if_act
=
True
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
()),
bias_attr
=
False
)
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
)
if
if_act
:
return
fluid
.
layers
.
relu6
(
bn
)
else
:
return
bn
def
shortcut
(
self
,
input
,
data_residual
):
return
fluid
.
layers
.
elementwise_add
(
input
,
data_residual
)
def
inverted_residual_unit
(
self
,
input
,
num_in_filter
,
num_filters
,
ifshortcut
,
stride
,
filter_size
,
padding
,
expansion_factor
):
num_expfilter
=
int
(
round
(
num_in_filter
*
expansion_factor
))
channel_expand
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_expfilter
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
True
)
bottleneck_conv
=
self
.
conv_bn_layer
(
input
=
channel_expand
,
num_filters
=
num_expfilter
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
num_groups
=
num_expfilter
,
if_act
=
True
,
use_cudnn
=
False
)
linear_out
=
self
.
conv_bn_layer
(
input
=
bottleneck_conv
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
False
)
if
ifshortcut
:
out
=
self
.
shortcut
(
input
=
input
,
data_residual
=
linear_out
)
return
out
else
:
return
linear_out
def
invresi_blocks
(
self
,
input
,
in_c
,
t
,
c
,
n
,
s
):
first_block
=
self
.
inverted_residual_unit
(
input
=
input
,
num_in_filter
=
in_c
,
num_filters
=
c
,
ifshortcut
=
False
,
stride
=
s
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
)
last_residual_block
=
first_block
last_c
=
c
for
i
in
range
(
1
,
n
):
last_residual_block
=
self
.
inverted_residual_unit
(
input
=
last_residual_block
,
num_in_filter
=
last_c
,
num_filters
=
c
,
ifshortcut
=
True
,
stride
=
1
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
)
return
last_residual_block
demo/image-classification/nets/resnet.py
0 → 100644
浏览文件 @
6a3e9145
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
math
__all__
=
[
"ResNet"
,
"ResNet50"
,
"ResNet101"
,
"ResNet152"
]
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
ResNet
():
def
__init__
(
self
,
layers
=
50
):
self
.
params
=
train_parameters
self
.
layers
=
layers
def
net
(
self
,
input
,
class_dim
=
1000
):
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
,
pool
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
)
else
:
return
input
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
ResNet50
():
model
=
ResNet
(
layers
=
50
)
return
model
def
ResNet101
():
model
=
ResNet
(
layers
=
101
)
return
model
def
ResNet152
():
model
=
ResNet
(
layers
=
152
)
return
model
demo/image-classification/nohup.out
0 → 100644
浏览文件 @
6a3e9145
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
demo/image-classification/pretraind_models/download_model.sh
0 → 100644
浏览文件 @
6a3e9145
#!/bin/bash
set
-o
nounset
set
-o
errexit
script_path
=
$(
cd
`
dirname
$0
`
;
pwd
)
if
[
$#
-ne
1
]
then
echo
"usage: sh
$0
{PRETRAINED_MODEL_NAME}"
exit
1
fi
if
[
$1
!=
"ResNet50"
-a
$1
!=
"ResNet101"
-a
$1
!=
"ResNet152"
-a
$1
!=
"MobileNetV2"
]
then
echo
"only suppory pretrained model in {ResNet50, ResNet101, ResNet152, MobileNetV2}"
exit
1
fi
model_name
=
${
1
}
_pretrained
model
=
${
model_name
}
.zip
cd
${
script_path
}
if
[
-d
${
model_name
}
]
then
echo
"model file
${
model_name
}
is already existed"
exit
0
fi
if
[
!
-f
${
model
}
]
then
wget http://paddle-imagenet-models-name.bj.bcebos.com/
${
model
}
fi
unzip
${
model
}
# rm ${model}
rm
-rf
__MACOSX
demo/image-classification/reader.py
0 → 100644
浏览文件 @
6a3e9145
import
os
import
math
import
random
import
functools
import
numpy
as
np
import
paddle
from
PIL
import
Image
,
ImageEnhance
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
DATA_DIM
=
224
THREAD
=
8
BUF_SIZE
=
102400
DATA_DIR
=
'dataset'
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
h_start
=
(
height
-
size
)
/
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
random_crop
(
img
,
size
,
scale
=
[
0.08
,
1.0
],
ratio
=
[
3.
/
4.
,
4.
/
3.
]):
aspect_ratio
=
math
.
sqrt
(
np
.
random
.
uniform
(
*
ratio
))
w
=
1.
*
aspect_ratio
h
=
1.
/
aspect_ratio
bound
=
min
((
float
(
img
.
size
[
0
])
/
img
.
size
[
1
])
/
(
w
**
2
),
(
float
(
img
.
size
[
1
])
/
img
.
size
[
0
])
/
(
h
**
2
))
scale_max
=
min
(
scale
[
1
],
bound
)
scale_min
=
min
(
scale
[
0
],
bound
)
target_area
=
img
.
size
[
0
]
*
img
.
size
[
1
]
*
np
.
random
.
uniform
(
scale_min
,
scale_max
)
target_size
=
math
.
sqrt
(
target_area
)
w
=
int
(
target_size
*
w
)
h
=
int
(
target_size
*
h
)
i
=
np
.
random
.
randint
(
0
,
img
.
size
[
0
]
-
w
+
1
)
j
=
np
.
random
.
randint
(
0
,
img
.
size
[
1
]
-
h
+
1
)
img
=
img
.
crop
((
i
,
j
,
i
+
w
,
j
+
h
))
img
=
img
.
resize
((
size
,
size
),
Image
.
LANCZOS
)
return
img
def
rotate_image
(
img
):
angle
=
np
.
random
.
randint
(
-
10
,
11
)
img
=
img
.
rotate
(
angle
)
return
img
def
distort_color
(
img
):
def
random_brightness
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Brightness
(
img
).
enhance
(
e
)
def
random_contrast
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Contrast
(
img
).
enhance
(
e
)
def
random_color
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Color
(
img
).
enhance
(
e
)
ops
=
[
random_brightness
,
random_contrast
,
random_color
]
np
.
random
.
shuffle
(
ops
)
img
=
ops
[
0
](
img
)
img
=
ops
[
1
](
img
)
img
=
ops
[
2
](
img
)
return
img
def
process_image
(
sample
,
mode
,
color_jitter
,
rotate
):
img_path
=
sample
[
0
]
img
=
Image
.
open
(
img_path
)
if
mode
==
'train'
:
if
rotate
:
img
=
rotate_image
(
img
)
img
=
random_crop
(
img
,
DATA_DIM
)
else
:
img
=
resize_short
(
img
,
target_size
=
256
)
img
=
crop_image
(
img
,
target_size
=
DATA_DIM
,
center
=
True
)
if
mode
==
'train'
:
if
color_jitter
:
img
=
distort_color
(
img
)
if
np
.
random
.
randint
(
0
,
2
)
==
1
:
img
=
img
.
transpose
(
Image
.
FLIP_LEFT_RIGHT
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img
-=
img_mean
img
/=
img_std
if
mode
==
'train'
or
mode
==
'val'
:
return
img
,
sample
[
1
]
elif
mode
==
'test'
:
return
[
img
]
def
_reader_creator
(
file_list
,
mode
,
shuffle
=
False
,
color_jitter
=
False
,
rotate
=
False
,
data_dir
=
DATA_DIR
):
def
reader
():
with
open
(
file_list
)
as
flist
:
full_lines
=
[
line
.
strip
()
for
line
in
flist
]
if
shuffle
:
np
.
random
.
shuffle
(
full_lines
)
if
mode
==
'train'
and
os
.
getenv
(
'PADDLE_TRAINING_ROLE'
):
# distributed mode if the env var `PADDLE_TRAINING_ROLE` exits
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
trainer_count
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS"
,
"1"
))
per_node_lines
=
len
(
full_lines
)
//
trainer_count
lines
=
full_lines
[
trainer_id
*
per_node_lines
:
(
trainer_id
+
1
)
*
per_node_lines
]
print
(
"read images from %d, length: %d, lines length: %d, total: %d"
%
(
trainer_id
*
per_node_lines
,
per_node_lines
,
len
(
lines
),
len
(
full_lines
)))
else
:
lines
=
full_lines
for
line
in
lines
:
if
mode
==
'train'
or
mode
==
'val'
:
img_path
,
label
=
line
.
split
()
# img_path = img_path.replace("JPEG", "jpeg")
img_path
=
os
.
path
.
join
(
data_dir
,
img_path
)
yield
img_path
,
int
(
label
)
elif
mode
==
'test'
:
img_path
=
os
.
path
.
join
(
data_dir
,
line
)
yield
[
img_path
]
mapper
=
functools
.
partial
(
process_image
,
mode
=
mode
,
color_jitter
=
color_jitter
,
rotate
=
rotate
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
THREAD
,
BUF_SIZE
)
def
train
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'train_list.txt'
)
return
_reader_creator
(
file_list
,
'train'
,
shuffle
=
True
,
color_jitter
=
False
,
rotate
=
False
,
data_dir
=
data_dir
+
"/train"
)
def
val
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
return
_reader_creator
(
file_list
,
'val'
,
shuffle
=
False
,
data_dir
=
data_dir
+
"/val"
)
def
test
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
return
_reader_creator
(
file_list
,
'test'
,
shuffle
=
False
,
data_dir
=
data_dir
)
demo/image-classification/retrain.py
0 → 100644
浏览文件 @
6a3e9145
#-*- coding:utf8 -*-
import
paddle
import
paddle.fluid
as
fluid
import
paddle_hub
as
hub
import
paddle_hub.module
as
module
import
sys
import
os
import
reader
import
argparse
import
functools
from
visualdl
import
LogWriter
from
utility
import
add_arguments
,
print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'hub_module_path'
,
str
,
"hub_module_ResNet50"
,
"the hub module path"
)
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'num_epochs'
,
int
,
20
,
"number of epochs."
)
add_arg
(
'class_dim'
,
int
,
2
,
"Class number."
)
add_arg
(
'image_shape'
,
str
,
"3,224,224"
,
"input image size"
)
add_arg
(
'lr'
,
float
,
0.1
,
"set learning rate."
)
add_arg
(
'data_dir'
,
str
,
"./dataset"
,
"The ImageNet dataset root dir."
)
add_arg
(
'model_save_dir'
,
str
,
"./model_save"
,
"model save dir"
)
# yapf: enable
def
retrain
(
modelpath
):
module
=
hub
.
Module
(
module_dir
=
args
.
hub_module_path
)
feed_list
,
fetch_list
,
program
=
module
.
context
(
sign_name
=
"feature_map"
,
trainable
=
True
)
# get the dog cat dataset
train_reader
=
paddle
.
batch
(
reader
.
train
(
args
.
data_dir
),
batch_size
=
32
)
val_reader
=
paddle
.
batch
(
reader
.
val
(
args
.
data_dir
),
batch_size
=
32
)
logger
=
LogWriter
(
"vdl_log"
,
sync_cycle
=
5
)
with
logger
.
mode
(
"train"
)
as
logw
:
train_acc_scalar
=
logw
.
scalar
(
"acc"
)
train_cost_scalar
=
logw
.
scalar
(
"cost"
)
with
logger
.
mode
(
"val"
)
as
logw
:
val_acc_scalar
=
logw
.
scalar
(
"acc"
)
val_cost_scalar
=
logw
.
scalar
(
"cost"
)
with
fluid
.
program_guard
(
main_program
=
program
):
img
=
feed_list
[
0
]
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
feature_map
=
fetch_list
[
0
]
fc
=
fluid
.
layers
.
fc
(
input
=
feature_map
,
size
=
2
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
fc
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
fc
,
label
=
label
)
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
optimizer
.
minimize
(
avg_cost
)
# running on gpu
place
=
fluid
.
CUDAPlace
(
0
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
,
main_program
=
fluid
.
default_main_program
())
# init all param
exe
.
run
(
fluid
.
default_startup_program
())
step
=
0
sample_num
=
0
epochs
=
50
# start to train
for
i
in
range
(
epochs
):
train_size
=
0
train_acc
=
0
train_cost
=
0
for
batch
in
train_reader
():
cost
,
accuracy
=
train_exe
.
run
(
feed
=
feeder
.
feed
(
batch
),
fetch_list
=
[
avg_cost
.
name
,
acc
.
name
])
step
+=
1
#####################
train_size
+=
1
train_acc
+=
len
(
batch
)
*
accuracy
train_cost
+=
cost
#####################
print
(
"epoch %d and step %d: train cost is %.2f, train acc is %.2f%%"
%
(
i
,
step
,
cost
,
accuracy
*
100
))
train_acc
=
100
*
train_acc
/
(
train_size
*
32
)
print
(
"epoch %d: train acc is %.2f%%"
%
(
i
,
train_acc
))
#####################
train_acc_scalar
.
add_record
(
i
,
train_acc
)
train_cost_scalar
.
add_record
(
i
,
train_cost
/
train_size
)
#####################
val_size
=
0
val_acc
=
0
val_cost
=
0
with
fluid
.
program_guard
(
inference_program
):
for
iter
,
batch
in
enumerate
(
val_reader
()):
cost
,
accuracy
=
train_exe
.
run
(
feed
=
feeder
.
feed
(
batch
),
fetch_list
=
[
avg_cost
.
name
,
acc
.
name
])
val_size
+=
1
val_acc
+=
len
(
batch
)
*
accuracy
val_cost
+=
cost
print
(
"batch %d: val cost is %.2f, val acc is %.2f%%"
%
(
iter
,
cost
,
accuracy
*
100
))
val_acc
=
100
*
val_acc
/
(
val_size
*
32
)
print
(
"epoch %d: val acc is %.2f%%"
%
(
i
,
val_acc
))
val_acc_scalar
.
add_record
(
i
,
val_acc
)
val_cost_scalar
.
add_record
(
i
,
val_cost
/
val_size
)
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
model_save_dir
,
"iter%d"
%
i
),
feeded_var_names
=
[
img
.
name
],
target_vars
=
[
fc
],
executor
=
exe
)
if
__name__
==
"__main__"
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
retrain
(
sys
.
argv
[
1
])
demo/image-classification/test.py
0 → 100644
浏览文件 @
6a3e9145
#-*- coding:utf8 -*-
import
paddle
import
paddle.fluid
as
fluid
import
paddle_hub.module
as
module
import
reader
import
sys
def
retrain
(
modelpath
):
model
=
module
.
Module
(
module_dir
=
modelpath
)
feed_list
,
fetch_list
,
program
=
model
(
sign_name
=
"feature_map"
,
trainable
=
True
)
# get the dog cat dataset
train_reader
=
paddle
.
batch
(
reader
.
train
(
"./dataset"
),
batch_size
=
32
)
val_reader
=
paddle
.
batch
(
reader
.
val
(
"./dataset"
),
batch_size
=
32
)
with
fluid
.
program_guard
(
main_program
=
program
):
img
=
feed_list
[
0
]
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
feature_map
=
fetch_list
[
0
]
fc
=
fluid
.
layers
.
fc
(
input
=
feature_map
,
size
=
2
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
fc
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
fc
,
label
=
label
)
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
optimizer
.
minimize
(
avg_cost
)
# running on gpu
place
=
fluid
.
CUDAPlace
(
0
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
,
main_program
=
fluid
.
default_main_program
())
# init all param
exe
.
run
(
fluid
.
default_startup_program
())
step
=
0
epochs
=
50
# start to train
for
i
in
range
(
epochs
):
for
batch
in
train_reader
():
cost
,
accuracy
=
train_exe
.
run
(
feed
=
feeder
.
feed
(
batch
),
fetch_list
=
[
avg_cost
.
name
,
acc
.
name
])
step
+=
1
print
(
"epoch %d and step %d: train cost is %.2f, train acc is %.2f%%"
%
(
i
,
step
,
cost
,
accuracy
*
100
))
if
__name__
==
"__main__"
:
retrain
(
sys
.
argv
[
1
])
demo/image-classification/train.py
0 → 100644
浏览文件 @
6a3e9145
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
numpy
as
np
import
time
import
sys
import
functools
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.dataset.flowers
as
flowers
import
reader
import
argparse
import
functools
import
subprocess
import
utils
import
nets
import
paddle_hub
as
hub
from
utils.learning_rate
import
cosine_decay
from
utils.fp16_utils
import
create_master_params_grads
,
master_param_to_train_param
from
utility
import
add_arguments
,
print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'create_module'
,
bool
,
False
,
"create a hub module or not"
)
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'total_images'
,
int
,
12000
,
"Training image number."
)
add_arg
(
'num_epochs'
,
int
,
120
,
"number of epochs."
)
add_arg
(
'class_dim'
,
int
,
2
,
"Class number."
)
add_arg
(
'image_shape'
,
str
,
"3,224,224"
,
"input image size"
)
add_arg
(
'model_save_dir'
,
str
,
"output"
,
"model save directory"
)
add_arg
(
'pretrained_model'
,
str
,
None
,
"Whether to use pretrained model."
)
add_arg
(
'lr'
,
float
,
0.1
,
"set learning rate."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"Set the learning rate decay strategy."
)
add_arg
(
'model'
,
str
,
"ResNet50"
,
"Set the network to use."
)
add_arg
(
'data_dir'
,
str
,
"./dataset"
,
"The ImageNet dataset root dir."
)
add_arg
(
'fp16'
,
bool
,
False
,
"Enable half precision training with fp16."
)
add_arg
(
'scale_loss'
,
float
,
1.0
,
"Scale loss for fp16."
)
# yapf: enable
def
optimizer_setting
(
params
):
ls
=
params
[
"learning_strategy"
]
if
ls
[
"name"
]
==
"piecewise_decay"
:
if
"total_images"
not
in
params
:
total_images
=
12000
else
:
total_images
=
params
[
"total_images"
]
batch_size
=
ls
[
"batch_size"
]
step
=
int
(
total_images
/
batch_size
+
1
)
bd
=
[
step
*
e
for
e
in
ls
[
"epochs"
]]
base_lr
=
params
[
"lr"
]
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
elif
ls
[
"name"
]
==
"cosine_decay"
:
if
"total_images"
not
in
params
:
total_images
=
12000
else
:
total_images
=
params
[
"total_images"
]
batch_size
=
ls
[
"batch_size"
]
step
=
int
(
total_images
/
batch_size
+
1
)
lr
=
params
[
"lr"
]
num_epochs
=
params
[
"num_epochs"
]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
cosine_decay
(
learning_rate
=
lr
,
step_each_epoch
=
step
,
epochs
=
num_epochs
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
4e-5
))
elif
ls
[
"name"
]
==
"exponential_decay"
:
if
"total_images"
not
in
params
:
total_images
=
12000
else
:
total_images
=
params
[
"total_images"
]
batch_size
=
ls
[
"batch_size"
]
step
=
int
(
total_images
/
batch_size
+
1
)
lr
=
params
[
"lr"
]
num_epochs
=
params
[
"num_epochs"
]
learning_decay_rate_factor
=
ls
[
"learning_decay_rate_factor"
]
num_epochs_per_decay
=
ls
[
"num_epochs_per_decay"
]
NUM_GPUS
=
1
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
lr
*
NUM_GPUS
,
decay_steps
=
step
*
num_epochs_per_decay
/
NUM_GPUS
,
decay_rate
=
learning_decay_rate_factor
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
4e-5
))
else
:
lr
=
params
[
"lr"
]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
lr
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
return
optimizer
def
net_config
(
image
,
label
,
model
,
args
):
class_dim
=
args
.
class_dim
model_name
=
args
.
model
out
,
feature_map
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
,
pred
=
fluid
.
layers
.
softmax_with_cross_entropy
(
out
,
label
,
return_softmax
=
True
)
if
args
.
scale_loss
>
1
:
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
*
float
(
args
.
scale_loss
)
else
:
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
pred
,
label
=
label
,
k
=
1
)
return
avg_cost
,
acc_top1
,
out
,
feature_map
def
build_program
(
is_train
,
main_prog
,
startup_prog
,
args
):
image_shape
=
[
int
(
m
)
for
m
in
args
.
image_shape
.
split
(
","
)]
model_name
=
args
.
model
model
=
nets
.
__dict__
[
model_name
]()
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
16
,
shapes
=
[[
-
1
]
+
image_shape
,
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
],
use_double_buffer
=
True
)
with
fluid
.
unique_name
.
guard
():
image
,
label
=
fluid
.
layers
.
read_file
(
py_reader
)
if
args
.
fp16
:
image
=
fluid
.
layers
.
cast
(
image
,
"float16"
)
avg_cost
,
acc_top1
,
predition
,
feature_map
=
net_config
(
image
,
label
,
model
,
args
)
avg_cost
.
persistable
=
True
acc_top1
.
persistable
=
True
if
is_train
:
params
=
model
.
params
params
[
"total_images"
]
=
args
.
total_images
params
[
"lr"
]
=
args
.
lr
params
[
"num_epochs"
]
=
args
.
num_epochs
params
[
"learning_strategy"
][
"batch_size"
]
=
args
.
batch_size
params
[
"learning_strategy"
][
"name"
]
=
args
.
lr_strategy
optimizer
=
optimizer_setting
(
params
)
if
args
.
fp16
:
params_grads
=
optimizer
.
backward
(
avg_cost
)
master_params_grads
=
create_master_params_grads
(
params_grads
,
main_prog
,
startup_prog
,
args
.
scale_loss
)
optimizer
.
apply_gradients
(
master_params_grads
)
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
)
else
:
optimizer
.
minimize
(
avg_cost
)
return
py_reader
,
avg_cost
,
acc_top1
,
image
,
predition
,
feature_map
def
train
(
args
):
# parameters from arguments
model_name
=
args
.
model
pretrained_model
=
args
.
pretrained_model
model_save_dir
=
args
.
model_save_dir
startup_prog
=
fluid
.
Program
()
train_prog
=
fluid
.
Program
()
test_prog
=
fluid
.
Program
()
train_py_reader
,
train_cost
,
train_acc
,
image
,
predition
,
feature_map
=
build_program
(
is_train
=
True
,
main_prog
=
train_prog
,
startup_prog
=
startup_prog
,
args
=
args
)
test_py_reader
,
test_cost
,
test_acc
,
image
,
predition
,
feature_map
=
build_program
(
is_train
=
False
,
main_prog
=
test_prog
,
startup_prog
=
startup_prog
,
args
=
args
)
test_prog
=
test_prog
.
clone
(
for_test
=
True
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
main_program
=
train_prog
,
predicate
=
if_exist
)
if
args
.
create_module
:
assert
pretrained_model
,
"need a pretrained module to create a hub module"
sign1
=
hub
.
create_signature
(
"classification"
,
inputs
=
[
image
],
outputs
=
[
predition
])
sign2
=
hub
.
create_signature
(
"feature_map"
,
inputs
=
[
image
],
outputs
=
[
feature_map
])
sign3
=
hub
.
create_signature
(
inputs
=
[
image
],
outputs
=
[
predition
])
hub
.
create_module
(
sign_arr
=
[
sign1
,
sign2
,
sign3
],
module_dir
=
"hub_module_"
+
args
.
model
)
exit
()
visible_device
=
os
.
getenv
(
'CUDA_VISIBLE_DEVICES'
)
if
visible_device
:
device_num
=
len
(
visible_device
.
split
(
','
))
else
:
device_num
=
subprocess
.
check_output
([
'nvidia-smi'
,
'-L'
]).
decode
().
count
(
'
\n
'
)
train_batch_size
=
args
.
batch_size
/
device_num
test_batch_size
=
16
train_reader
=
paddle
.
batch
(
reader
.
train
(),
batch_size
=
train_batch_size
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
test_batch_size
)
train_py_reader
.
decorate_paddle_reader
(
train_reader
)
test_py_reader
.
decorate_paddle_reader
(
test_reader
)
train_exe
=
fluid
.
ParallelExecutor
(
main_program
=
train_prog
,
use_cuda
=
bool
(
args
.
use_gpu
),
loss_name
=
train_cost
.
name
)
train_fetch_list
=
[
train_cost
.
name
,
train_acc
.
name
]
test_fetch_list
=
[
test_cost
.
name
,
test_acc
.
name
]
params
=
nets
.
__dict__
[
args
.
model
]().
params
for
pass_id
in
range
(
params
[
"num_epochs"
]):
train_py_reader
.
start
()
train_info
=
[[],
[],
[]]
test_info
=
[[],
[],
[]]
train_time
=
[]
batch_id
=
0
try
:
while
True
:
t1
=
time
.
time
()
loss
,
acc
=
train_exe
.
run
(
fetch_list
=
train_fetch_list
)
t2
=
time
.
time
()
period
=
t2
-
t1
loss
=
np
.
mean
(
np
.
array
(
loss
))
acc
=
np
.
mean
(
np
.
array
(
acc
))
train_info
[
0
].
append
(
loss
)
train_info
[
1
].
append
(
acc
)
train_time
.
append
(
period
)
if
batch_id
%
10
==
0
:
print
(
"Pass {0}, trainbatch {1}, loss {2},
\
acc {3}, time {4}"
.
format
(
pass_id
,
batch_id
,
loss
,
acc
,
"%2.2f sec"
%
period
))
sys
.
stdout
.
flush
()
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
train_py_reader
.
reset
()
train_loss
=
np
.
array
(
train_info
[
0
]).
mean
()
train_acc
=
np
.
array
(
train_info
[
1
]).
mean
()
train_speed
=
np
.
array
(
train_time
).
mean
()
/
(
train_batch_size
*
device_num
)
test_py_reader
.
start
()
test_batch_id
=
0
try
:
while
True
:
t1
=
time
.
time
()
loss
,
acc
=
exe
.
run
(
program
=
test_prog
,
fetch_list
=
test_fetch_list
)
t2
=
time
.
time
()
period
=
t2
-
t1
loss
=
np
.
mean
(
loss
)
acc
=
np
.
mean
(
acc
)
test_info
[
0
].
append
(
loss
)
test_info
[
1
].
append
(
acc
)
if
test_batch_id
%
10
==
0
:
print
(
"Pass {0},testbatch {1},loss {2},
\
acc {3},time {4}"
.
format
(
pass_id
,
test_batch_id
,
loss
,
acc
,
"%2.2f sec"
%
period
))
sys
.
stdout
.
flush
()
test_batch_id
+=
1
except
fluid
.
core
.
EOFException
:
test_py_reader
.
reset
()
test_loss
=
np
.
array
(
test_info
[
0
]).
mean
()
test_acc
=
np
.
array
(
test_info
[
1
]).
mean
()
print
(
"End pass {0}, train_loss {1}, train_acc {2}, "
"test_loss {3}, test_acc {4}"
.
format
(
pass_id
,
train_loss
,
train_acc
,
test_loss
,
test_acc
))
sys
.
stdout
.
flush
()
model_path
=
os
.
path
.
join
(
model_save_dir
+
'/'
+
model_name
,
str
(
pass_id
))
if
not
os
.
path
.
isdir
(
model_path
):
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
,
main_program
=
train_prog
)
def
main
():
args
=
parser
.
parse_args
()
assert
args
.
model
in
nets
.
__all__
,
"model is not in list %s"
%
nets
.
__all__
print_arguments
(
args
)
train
(
args
)
if
__name__
==
'__main__'
:
main
()
demo/image-classification/train.sh
0 → 100644
浏览文件 @
6a3e9145
#!/bin/bash
set
-o
nounset
set
-o
errexit
script_path
=
$(
cd
`
dirname
$0
`
;
pwd
)
cd
$script_path
model_name
=
ResNet50
batch_size
=
32
data_dir
=
./dataset
class_dim
=
2
use_gpu
=
False
while
getopts
"m:b:c:d:g"
options
do
case
"
$options
"
in
b
)
batch_size
=
$OPTARG
;;
c
)
class_dim
=
$OPTARG
;;
d
)
data_dir
=
$OPTARG
;;
m
)
model_name
=
$OPTARG
;;
g
)
use_gpu
=
True
;;
?
)
echo
"unknown options"
exit
1
;;
esac
done
python train.py
--data_dir
=
${
data_dir
}
--batch_size
=
${
batch_size
}
--class_dim
=
${
class_dim
}
--image_shape
=
3,224,224
--model_save_dir
=
output/
--lr_strategy
=
piecewise_decay
--lr
=
0.1
--model
=
${
model_name
}
--use_gpu
=
${
use_gpu
}
demo/image-classification/utility.py
0 → 100644
浏览文件 @
6a3e9145
"""Contains common utility functions."""
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
distutils.util
import
numpy
as
np
import
six
from
paddle.fluid
import
core
def
print_arguments
(
args
):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print
(
"----------- Configuration Arguments -----------"
)
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
args
))):
print
(
"%s: %s"
%
(
arg
,
value
))
print
(
"------------------------------------------------"
)
def
add_arguments
(
argname
,
type
,
default
,
help
,
argparser
,
**
kwargs
):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type
=
distutils
.
util
.
strtobool
if
type
==
bool
else
type
argparser
.
add_argument
(
"--"
+
argname
,
default
=
default
,
type
=
type
,
help
=
help
+
' Default: %(default)s.'
,
**
kwargs
)
demo/image-classification/utils/__init__.py
0 → 100644
浏览文件 @
6a3e9145
from
.learning_rate
import
cosine_decay
,
lr_warmup
from
.fp16_utils
import
create_master_params_grads
,
master_param_to_train_param
demo/image-classification/utils/fp16_utils.py
0 → 100644
浏览文件 @
6a3e9145
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
def
cast_fp16_to_fp32
(
i
,
o
,
prog
):
prog
.
global_block
().
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
i
},
outputs
=
{
"Out"
:
o
},
attrs
=
{
"in_dtype"
:
fluid
.
core
.
VarDesc
.
VarType
.
FP16
,
"out_dtype"
:
fluid
.
core
.
VarDesc
.
VarType
.
FP32
})
def
cast_fp32_to_fp16
(
i
,
o
,
prog
):
prog
.
global_block
().
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
i
},
outputs
=
{
"Out"
:
o
},
attrs
=
{
"in_dtype"
:
fluid
.
core
.
VarDesc
.
VarType
.
FP32
,
"out_dtype"
:
fluid
.
core
.
VarDesc
.
VarType
.
FP16
})
def
copy_to_master_param
(
p
,
block
):
v
=
block
.
vars
.
get
(
p
.
name
,
None
)
if
v
is
None
:
raise
ValueError
(
"no param name %s found!"
%
p
.
name
)
new_p
=
fluid
.
framework
.
Parameter
(
block
=
block
,
shape
=
v
.
shape
,
dtype
=
fluid
.
core
.
VarDesc
.
VarType
.
FP32
,
type
=
v
.
type
,
lod_level
=
v
.
lod_level
,
stop_gradient
=
p
.
stop_gradient
,
trainable
=
p
.
trainable
,
optimize_attr
=
p
.
optimize_attr
,
regularizer
=
p
.
regularizer
,
gradient_clip_attr
=
p
.
gradient_clip_attr
,
error_clip
=
p
.
error_clip
,
name
=
v
.
name
+
".master"
)
return
new_p
def
create_master_params_grads
(
params_grads
,
main_prog
,
startup_prog
,
scale_loss
):
master_params_grads
=
[]
tmp_role
=
main_prog
.
_current_role
OpRole
=
fluid
.
core
.
op_proto_and_checker_maker
.
OpRole
main_prog
.
_current_role
=
OpRole
.
Backward
for
p
,
g
in
params_grads
:
# create master parameters
master_param
=
copy_to_master_param
(
p
,
main_prog
.
global_block
())
startup_master_param
=
startup_prog
.
global_block
().
_clone_variable
(
master_param
)
startup_p
=
startup_prog
.
global_block
().
var
(
p
.
name
)
cast_fp16_to_fp32
(
startup_p
,
startup_master_param
,
startup_prog
)
# cast fp16 gradients to fp32 before apply gradients
if
g
.
name
.
startswith
(
"batch_norm"
):
if
scale_loss
>
1
:
scaled_g
=
g
/
float
(
scale_loss
)
else
:
scaled_g
=
g
master_params_grads
.
append
([
p
,
scaled_g
])
continue
master_grad
=
fluid
.
layers
.
cast
(
g
,
"float32"
)
if
scale_loss
>
1
:
master_grad
=
master_grad
/
float
(
scale_loss
)
master_params_grads
.
append
([
master_param
,
master_grad
])
main_prog
.
_current_role
=
tmp_role
return
master_params_grads
def
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
):
for
idx
,
m_p_g
in
enumerate
(
master_params_grads
):
train_p
,
_
=
params_grads
[
idx
]
if
train_p
.
name
.
startswith
(
"batch_norm"
):
continue
with
main_prog
.
_optimized_guard
([
m_p_g
[
0
],
m_p_g
[
1
]]):
cast_fp32_to_fp16
(
m_p_g
[
0
],
train_p
,
main_prog
)
demo/image-classification/utils/learning_rate.py
0 → 100644
浏览文件 @
6a3e9145
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers.ops
as
ops
from
paddle.fluid.initializer
import
init_on_cpu
from
paddle.fluid.layers.learning_rate_scheduler
import
_decay_step_counter
import
math
def
cosine_decay
(
learning_rate
,
step_each_epoch
,
epochs
=
120
):
"""Applies cosine decay to the learning rate.
lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
"""
global_step
=
_decay_step_counter
()
with
init_on_cpu
():
epoch
=
ops
.
floor
(
global_step
/
step_each_epoch
)
decayed_lr
=
learning_rate
*
\
(
ops
.
cos
(
epoch
*
(
math
.
pi
/
epochs
))
+
1
)
/
2
return
decayed_lr
def
lr_warmup
(
learning_rate
,
warmup_steps
,
start_lr
,
end_lr
):
""" Applies linear learning rate warmup for distributed training
Argument learning_rate can be float or a Variable
lr = lr + (warmup_rate * step / warmup_steps)
"""
assert
(
isinstance
(
end_lr
,
float
))
assert
(
isinstance
(
start_lr
,
float
))
linear_step
=
end_lr
-
start_lr
with
fluid
.
default_main_program
().
_lr_schedule_guard
():
lr
=
fluid
.
layers
.
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate_warmup"
)
global_step
=
fluid
.
layers
.
learning_rate_scheduler
.
_decay_step_counter
()
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
global_step
<
warmup_steps
):
decayed_lr
=
start_lr
+
linear_step
*
(
global_step
/
warmup_steps
)
fluid
.
layers
.
tensor
.
assign
(
decayed_lr
,
lr
)
with
switch
.
default
():
fluid
.
layers
.
tensor
.
assign
(
learning_rate
,
lr
)
return
lr
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录