Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
69788b6d
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
69788b6d
编写于
10月 14, 2020
作者:
W
wuzewu
提交者:
GitHub
10月 14, 2020
浏览文件
操作
浏览文件
下载
差异文件
update resnet50_vd_10w
上级
6405d834
725f538a
变更
7
展开全部
隐藏空白更改
内联
并排
Showing
7 changed file
with
239 addition
and
1598 deletion
+239
-1598
hub_module/modules/image/classification/resnet50_vd_10w/README.md
...le/modules/image/classification/resnet50_vd_10w/README.md
+0
-85
hub_module/modules/image/classification/resnet50_vd_10w/__init__.py
.../modules/image/classification/resnet50_vd_10w/__init__.py
+0
-0
hub_module/modules/image/classification/resnet50_vd_10w/data_feed.py
...modules/image/classification/resnet50_vd_10w/data_feed.py
+0
-84
hub_module/modules/image/classification/resnet50_vd_10w/label_list.txt
...dules/image/classification/resnet50_vd_10w/label_list.txt
+0
-1000
hub_module/modules/image/classification/resnet50_vd_10w/module.py
...le/modules/image/classification/resnet50_vd_10w/module.py
+239
-125
hub_module/modules/image/classification/resnet50_vd_10w/processor.py
...modules/image/classification/resnet50_vd_10w/processor.py
+0
-55
hub_module/modules/image/classification/resnet50_vd_10w/resnet_vd.py
...modules/image/classification/resnet50_vd_10w/resnet_vd.py
+0
-249
未找到文件。
hub_module/modules/image/classification/resnet50_vd_10w/README.md
已删除
100644 → 0
浏览文件 @
6405d834
<p
align=
"center"
>
<img
src=
"http://bj.bcebos.com/ibox-thumbnail98/77fa9b7003e4665867855b2b65216519?authorization=bce-auth-v1%2Ffbe74140929444858491fbf2b6bc0935%2F2020-04-08T11%3A05%3A10Z%2F1800%2F%2F1df0ecb4a52adefeae240c9e2189e8032560333e399b3187ef1a76e4ffa5f19f"
hspace=
'5'
width=
800/
>
<br
/>
ResNet 系列的网络结构
</p>
模型的详情可参考
[
论文
](
https://arxiv.org/pdf/1812.01187.pdf
)
## API
```
python
def
get_expected_image_width
()
```
返回预处理的图片宽度,也就是224。
```
python
def
get_expected_image_height
()
```
返回预处理的图片高度,也就是224。
```
python
def
get_pretrained_images_mean
()
```
返回预处理的图片均值,也就是
\[
0.485, 0.456, 0.406
\]
。
```
python
def
get_pretrained_images_std
()
```
返回预处理的图片标准差,也就是
\[
0.229, 0.224, 0.225
\]
。
```
python
def
context
(
trainable
=
True
,
pretrained
=
True
)
```
**参数**
*
trainable (bool): 计算图的参数是否为可训练的;
*
pretrained (bool): 是否加载默认的预训练模型。
**返回**
*
inputs (dict): 计算图的输入,key 为 'image', value 为图片的张量;
*
outputs (dict): 计算图的输出,key 为 'feature
\_
map', value为全连接层前面的那个张量。
*
context
\_
prog(fluid.Program): 计算图,用于迁移学习。
```
python
def
save_inference_model
(
dirname
,
model_filename
=
None
,
params_filename
=
None
,
combined
=
True
)
```
将模型保存到指定路径。
**参数**
*
dirname: 存在模型的目录名称
*
model_filename: 模型文件名称,默认为
\_\_
model
\_\_
*
params_filename: 参数文件名称,默认为
\_\_
params
\_\_
(仅当
`combined`
为True时生效)
*
combined: 是否将参数保存到统一的一个文件中
## 代码示例
```
python
import
paddlehub
as
hub
import
cv2
classifier
=
hub
.
Module
(
name
=
"resnet50_vd_10w"
)
input_dict
,
output_dict
,
program
=
classifier
.
context
(
trainable
=
True
)
```
### 查看代码
[
PaddleClas
](
https://github.com/PaddlePaddle/PaddleClas
)
### 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
hub_module/modules/image/classification/resnet50_vd_10w/__init__.py
已删除
100644 → 0
浏览文件 @
6405d834
hub_module/modules/image/classification/resnet50_vd_10w/data_feed.py
已删除
100644 → 0
浏览文件 @
6405d834
# coding=utf-8
import
os
import
time
from
collections
import
OrderedDict
import
cv2
import
numpy
as
np
from
PIL
import
Image
__all__
=
[
'reader'
]
DATA_DIM
=
224
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
h_start
=
(
height
-
size
)
/
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
process_image
(
img
):
img
=
resize_short
(
img
,
target_size
=
256
)
img
=
crop_image
(
img
,
target_size
=
DATA_DIM
,
center
=
True
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img
-=
img_mean
img
/=
img_std
return
img
def
reader
(
images
=
None
,
paths
=
None
):
"""
Preprocess to yield image.
Args:
images (list[numpy.ndarray]): images data, shape of each is [H, W, C].
paths (list[str]): paths to images.
Yield:
each (collections.OrderedDict): info of original image, preprocessed image.
"""
component
=
list
()
if
paths
:
for
im_path
in
paths
:
each
=
OrderedDict
()
assert
os
.
path
.
isfile
(
im_path
),
"The {} isn't a valid file path."
.
format
(
im_path
)
each
[
'org_im_path'
]
=
im_path
each
[
'org_im'
]
=
Image
.
open
(
im_path
)
each
[
'org_im_width'
],
each
[
'org_im_height'
]
=
each
[
'org_im'
].
size
component
.
append
(
each
)
if
images
is
not
None
:
assert
type
(
images
),
"images is a list."
for
im
in
images
:
each
=
OrderedDict
()
each
[
'org_im'
]
=
Image
.
fromarray
(
im
[:,
:,
::
-
1
])
each
[
'org_im_path'
]
=
'ndarray_time={}'
.
format
(
round
(
time
.
time
(),
6
)
*
1e6
)
each
[
'org_im_width'
],
each
[
'org_im_height'
]
=
each
[
'org_im'
].
size
component
.
append
(
each
)
for
element
in
component
:
element
[
'image'
]
=
process_image
(
element
[
'org_im'
])
yield
element
hub_module/modules/image/classification/resnet50_vd_10w/label_list.txt
已删除
100644 → 0
浏览文件 @
6405d834
此差异已折叠。
点击以展开。
hub_module/modules/image/classification/resnet50_vd_10w/module.py
浏览文件 @
69788b6d
# coding=utf-8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
from
__future__
import
absolute_import
#
from
__future__
import
division
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
import
ast
# You may obtain a copy of the License at
import
argparse
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
os
import
math
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle
import
paddlehub
as
hub
from
paddle
import
ParamAttr
from
paddle.fluid.core
import
PaddleTensor
,
AnalysisConfig
,
create_paddle_predictor
import
paddle.nn
as
nn
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddlehub.common.paddle_helper
import
add_vars_prefix
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
resnet50_vd_10w.processor
import
postprocess
,
base64_to_cv2
from
paddlehub.module.module
import
moduleinfo
from
resnet50_vd_10w.data_feed
import
reader
from
paddlehub.module.cv_module
import
ImageClassifierModule
from
resnet50_vd_10w.resnet_vd
import
ResNet50_vd
class
ConvBNLayer
(
nn
.
Layer
):
@
moduleinfo
(
"""Basic conv bn layer."""
name
=
"resnet50_vd_10w"
,
def
__init__
(
type
=
"CV/image_classification"
,
self
,
author
=
"paddlepaddle"
,
num_channels
:
int
,
author_email
=
"paddle-dev@baidu.com"
,
num_filters
:
int
,
summary
=
filter_size
:
int
,
"ResNet50vd is a image classfication model, this module is trained with Baidu's self-built dataset with 100,000 categories."
,
stride
:
int
=
1
,
version
=
"1.0.0"
)
groups
:
int
=
1
,
class
ResNet50vd
(
hub
.
Module
):
is_vd_mode
:
bool
=
False
,
def
_initialize
(
self
):
act
:
str
=
None
,
self
.
default_pretrained_model_path
=
os
.
path
.
join
(
name
:
str
=
None
,
self
.
directory
,
"model"
)
):
super
(
ConvBNLayer
,
self
).
__init__
()
def
get_expected_image_width
(
self
):
return
224
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
def
get_expected_image_height
(
self
):
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
return
224
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
def
get_pretrained_images_mean
(
self
):
stride
=
stride
,
im_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
(
1
,
3
)
padding
=
(
filter_size
-
1
)
//
2
,
return
im_mean
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
def
get_pretrained_images_std
(
self
):
bias_attr
=
False
)
im_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
(
1
,
3
)
if
name
==
"conv1"
:
return
im_std
bn_name
=
"bn_"
+
name
else
:
def
context
(
self
,
trainable
=
True
,
pretrained
=
True
):
bn_name
=
"bn"
+
name
[
3
:]
"""context for transfer learning.
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
Args:
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
trainable (bool): Set parameters in program to be trainable.
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
pretrained (bool) : Whether to load pretrained model.
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
Returns:
inputs (dict): key is 'image', corresponding vaule is image tensor.
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
outputs (dict): key is 'feature_map', corresponding value is the result of the layer before the fully connected layer.
if
self
.
is_vd_mode
:
context_prog (fluid.Program): program for transfer learning.
inputs
=
self
.
_pool2d_avg
(
inputs
)
"""
y
=
self
.
_conv
(
inputs
)
context_prog
=
fluid
.
Program
()
y
=
self
.
_batch_norm
(
y
)
startup_prog
=
fluid
.
Program
()
return
y
with
fluid
.
program_guard
(
context_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
class
BottleneckBlock
(
nn
.
Layer
):
name
=
"image"
,
shape
=
[
3
,
224
,
224
],
dtype
=
"float32"
)
"""Bottleneck Block for ResNet50_vd."""
resnet_vd
=
ResNet50_vd
()
def
__init__
(
self
,
feature_map
=
resnet_vd
.
net
(
input
=
image
)
num_channels
:
int
,
num_filters
:
int
,
name_prefix
=
'@HUB_{}@'
.
format
(
self
.
name
)
stride
:
int
,
inputs
=
{
'image'
:
name_prefix
+
image
.
name
}
shortcut
:
bool
=
True
,
outputs
=
{
'feature_map'
:
name_prefix
+
feature_map
.
name
}
if_first
:
bool
=
False
,
add_vars_prefix
(
context_prog
,
name_prefix
)
name
:
str
=
None
):
add_vars_prefix
(
startup_prog
,
name_prefix
)
super
(
BottleneckBlock
,
self
).
__init__
()
global_vars
=
context_prog
.
global_block
().
vars
inputs
=
{
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
key
:
global_vars
[
value
]
num_filters
=
num_filters
,
for
key
,
value
in
inputs
.
items
()
filter_size
=
1
,
}
act
=
'relu'
,
outputs
=
{
name
=
name
+
"_branch2a"
)
key
:
global_vars
[
value
]
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
for
key
,
value
in
outputs
.
items
()
num_filters
=
num_filters
,
}
filter_size
=
3
,
stride
=
stride
,
place
=
fluid
.
CPUPlace
()
act
=
'relu'
,
exe
=
fluid
.
Executor
(
place
)
name
=
name
+
"_branch2b"
)
# pretrained
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
if
pretrained
:
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
def
_if_exist
(
var
):
act
=
None
,
b
=
os
.
path
.
exists
(
name
=
name
+
"_branch2c"
)
os
.
path
.
join
(
self
.
default_pretrained_model_path
,
var
.
name
))
if
not
shortcut
:
return
b
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
fluid
.
io
.
load_vars
(
filter_size
=
1
,
exe
,
stride
=
1
,
self
.
default_pretrained_model_path
,
is_vd_mode
=
False
if
if_first
else
True
,
context_prog
,
name
=
name
+
"_branch1"
)
predicate
=
_if_exist
)
else
:
self
.
shortcut
=
shortcut
exe
.
run
(
startup_prog
)
# trainable
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
for
param
in
context_prog
.
global_block
().
iter_parameters
():
y
=
self
.
conv0
(
inputs
)
param
.
trainable
=
trainable
conv1
=
self
.
conv1
(
y
)
return
inputs
,
outputs
,
context_prog
conv2
=
self
.
conv2
(
conv1
)
def
save_inference_model
(
self
,
if
self
.
shortcut
:
dirname
,
short
=
inputs
model_filename
=
None
,
else
:
params_filename
=
None
,
short
=
self
.
short
(
inputs
)
combined
=
True
):
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
if
combined
:
return
y
model_filename
=
"__model__"
if
not
model_filename
else
model_filename
params_filename
=
"__params__"
if
not
params_filename
else
params_filename
place
=
fluid
.
CPUPlace
()
class
BasicBlock
(
nn
.
Layer
):
exe
=
fluid
.
Executor
(
place
)
"""Basic block for ResNet50_vd."""
def
__init__
(
self
,
program
,
feeded_var_names
,
target_vars
=
fluid
.
io
.
load_inference_model
(
num_channels
:
int
,
dirname
=
self
.
default_pretrained_model_path
,
executor
=
exe
)
num_filters
:
int
,
stride
:
int
,
fluid
.
io
.
save_inference_model
(
shortcut
:
bool
=
True
,
dirname
=
dirname
,
if_first
:
bool
=
False
,
main_program
=
program
,
name
:
str
=
None
):
executor
=
exe
,
super
(
BasicBlock
,
self
).
__init__
()
feeded_var_names
=
feeded_var_names
,
self
.
stride
=
stride
target_vars
=
target_vars
,
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
model_filename
=
model_filename
,
num_filters
=
num_filters
,
params_filename
=
params_filename
)
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
,
name
=
name
+
"_branch2b"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnet50_vd_10w"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"resnet50_vd_imagenet_ssld is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNet50_vd
(
nn
.
Layer
):
"""ResNet50_vd model."""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNet50_vd
,
self
).
__init__
()
self
.
layers
=
50
depth
=
[
3
,
4
,
6
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_0.w_0"
),
bias_attr
=
ParamAttr
(
name
=
"fc_0.b_0"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnet50_vd_10w.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnet50_vd_10w.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
y
=
self
.
conv1_3
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnet50_vd_10w/processor.py
已删除
100644 → 0
浏览文件 @
6405d834
# coding=utf-8
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
base64
import
cv2
import
os
import
numpy
as
np
def
base64_to_cv2
(
b64str
):
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
def
softmax
(
x
):
orig_shape
=
x
.
shape
if
len
(
x
.
shape
)
>
1
:
tmp
=
np
.
max
(
x
,
axis
=
1
)
x
-=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
x
=
np
.
exp
(
x
)
tmp
=
np
.
sum
(
x
,
axis
=
1
)
x
/=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
else
:
tmp
=
np
.
max
(
x
)
x
-=
tmp
x
=
np
.
exp
(
x
)
tmp
=
np
.
sum
(
x
)
x
/=
tmp
return
x
def
postprocess
(
data_out
,
label_list
,
top_k
):
"""
Postprocess output of network, one image at a time.
Args:
data_out (numpy.ndarray): output data of network.
label_list (list): list of label.
top_k (int): Return top k results.
"""
output
=
[]
for
result
in
data_out
:
result_i
=
softmax
(
result
)
output_i
=
{}
indexs
=
np
.
argsort
(
result_i
)[::
-
1
][
0
:
top_k
]
for
index
in
indexs
:
label
=
label_list
[
index
].
split
(
','
)[
0
]
output_i
[
label
]
=
float
(
result_i
[
index
])
output
.
append
(
output_i
)
return
output
hub_module/modules/image/classification/resnet50_vd_10w/resnet_vd.py
已删除
100755 → 0
浏览文件 @
6405d834
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
"ResNet"
,
"ResNet50_vd"
,
"ResNet101_vd"
,
"ResNet152_vd"
,
"ResNet200_vd"
]
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
ResNet
():
def
__init__
(
self
,
layers
=
50
,
is_3x3
=
False
):
self
.
params
=
train_parameters
self
.
layers
=
layers
self
.
is_3x3
=
is_3x3
def
net
(
self
,
input
):
is_3x3
=
self
.
is_3x3
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
,
200
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
elif
layers
==
200
:
depth
=
[
3
,
12
,
48
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
if
is_3x3
==
False
:
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
else
:
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
'conv1_1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'conv1_2'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'conv1_3'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
,
200
]
and
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
if_first
=
block
==
0
,
name
=
conv_name
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
return
pool
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
conv_bn_layer_new
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
)
conv
=
fluid
.
layers
.
conv2d
(
input
=
pool
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
1
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
,
name
,
if_first
=
False
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
if
if_first
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
name
=
name
)
else
:
return
self
.
conv_bn_layer_new
(
input
,
ch_out
,
1
,
stride
,
name
=
name
)
else
:
return
input
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
,
name
,
if_first
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
,
if_first
=
if_first
,
name
=
name
+
"_branch1"
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
ResNet50_vd
():
model
=
ResNet
(
layers
=
50
,
is_3x3
=
True
)
return
model
def
ResNet101_vd
():
model
=
ResNet
(
layers
=
101
,
is_3x3
=
True
)
return
model
def
ResNet152_vd
():
model
=
ResNet
(
layers
=
152
,
is_3x3
=
True
)
return
model
def
ResNet200_vd
():
model
=
ResNet
(
layers
=
200
,
is_3x3
=
True
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录