未验证 提交 6804b4ba 编写于 作者: H haoyuying 提交者: GitHub

revise colorize for image size

上级 edaa0663
......@@ -187,11 +187,14 @@ class ImageColorizeModule(RunModule, ImageServing):
visual_ret['fake_reg'] = resize(process(fake))
if visualization:
img = Image.open(images)
w, h = img.size[0], img.size[1]
fake_name = "fake_" + str(time.time()) + ".png"
if not os.path.exists(save_path):
os.mkdir(save_path)
fake_path = os.path.join(save_path, fake_name)
visual_gray = Image.fromarray(visual_ret['fake_reg'])
visual_gray = visual_gray.resize((w, h), Image.BILINEAR)
visual_gray.save(fake_path)
mse = np.mean((visual_ret['real'] * 1.0 - visual_ret['fake_reg'] * 1.0)**2)
......@@ -236,17 +239,16 @@ class Yolov3Module(RunModule, ImageServing):
for i, out in enumerate(outputs):
anchor_mask = self.anchor_masks[i]
loss = F.yolov3_loss(
x=out,
gt_box=gtbox,
gt_label=gtlabel,
gt_score=gtscore,
anchors=self.anchors,
anchor_mask=anchor_mask,
class_num=self.class_num,
ignore_thresh=self.ignore_thresh,
downsample_ratio=32,
use_label_smooth=False)
loss = F.yolov3_loss(x=out,
gt_box=gtbox,
gt_label=gtlabel,
gt_score=gtscore,
anchors=self.anchors,
anchor_mask=anchor_mask,
class_num=self.class_num,
ignore_thresh=self.ignore_thresh,
downsample_ratio=32,
use_label_smooth=False)
losses.append(paddle.reduce_mean(loss))
self.downsample //= 2
......@@ -285,14 +287,13 @@ class Yolov3Module(RunModule, ImageServing):
mask_anchors.append((self.anchors[2 * m]))
mask_anchors.append(self.anchors[2 * m + 1])
box, score = F.yolo_box(
x=out,
img_size=im_shape,
anchors=mask_anchors,
class_num=self.class_num,
conf_thresh=self.valid_thresh,
downsample_ratio=self.downsample,
name="yolo_box" + str(i))
box, score = F.yolo_box(x=out,
img_size=im_shape,
anchors=mask_anchors,
class_num=self.class_num,
conf_thresh=self.valid_thresh,
downsample_ratio=self.downsample,
name="yolo_box" + str(i))
boxes.append(box)
scores.append(paddle.transpose(score, perm=[0, 2, 1]))
......@@ -301,14 +302,13 @@ class Yolov3Module(RunModule, ImageServing):
yolo_boxes = paddle.concat(boxes, axis=1)
yolo_scores = paddle.concat(scores, axis=2)
pred = F.multiclass_nms(
bboxes=yolo_boxes,
scores=yolo_scores,
score_threshold=self.valid_thresh,
nms_top_k=self.nms_topk,
keep_top_k=self.nms_posk,
nms_threshold=self.nms_thresh,
background_label=-1)
pred = F.multiclass_nms(bboxes=yolo_boxes,
scores=yolo_scores,
score_threshold=self.valid_thresh,
nms_top_k=self.nms_topk,
keep_top_k=self.nms_posk,
nms_threshold=self.nms_thresh,
background_label=-1)
bboxes = pred.numpy()
labels = bboxes[:, 0].astype('int32')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册