Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
5ae5b5a0
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5ae5b5a0
编写于
11月 04, 2022
作者:
jm_12138
提交者:
GitHub
11月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update animegan_v2_paprika_54 (#2092)
* update animegan_v2_paprika_54 * update animegan_v2_paprika_54
上级
3a68cf63
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
217 addition
and
68 deletion
+217
-68
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/README.md
...Image_gan/style_transfer/animegan_v2_paprika_54/README.md
+4
-8
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/README_en.md
...ge_gan/style_transfer/animegan_v2_paprika_54/README_en.md
+6
-6
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/model.py
.../Image_gan/style_transfer/animegan_v2_paprika_54/model.py
+122
-39
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/module.py
...Image_gan/style_transfer/animegan_v2_paprika_54/module.py
+23
-13
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/processor.py
...ge_gan/style_transfer/animegan_v2_paprika_54/processor.py
+3
-2
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/test.py
...e/Image_gan/style_transfer/animegan_v2_paprika_54/test.py
+59
-0
未找到文件。
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/README.md
浏览文件 @
5ae5b5a0
...
...
@@ -135,14 +135,10 @@
初始发布
*
1.
0.1
*
1.
1.0
适配paddlehub2.0
*
1.0.2
删除batch_size选项
移除 Fluid API
-
```shell
$ hub install animegan_v2_paprika_54==1.0.2
```
\ No newline at end of file
$ hub install animegan_v2_paprika_54==1.1.0
```
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/README_en.md
浏览文件 @
5ae5b5a0
...
...
@@ -11,7 +11,7 @@
|Data indicators|-|
## I. Basic Information
## I. Basic Information
-
### Application Effect Display
...
...
@@ -142,10 +142,10 @@
First release.
*
1.
0.1
*
1.
1.0
Support paddlehub2.0.
Remove Fluid API
*
1.0.2
Delete batch_size.
-
```shell
$ hub install animegan_v2_paprika_54==1.1.0
```
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/model.py
浏览文件 @
5ae5b5a0
import
os
import
numpy
as
np
from
paddle.inference
import
create_predictor
,
Config
import
numpy
as
np
from
paddle.inference
import
Config
from
paddle.inference
import
create_predictor
__all__
=
[
'Model'
]
__all__
=
[
'
Inference
Model'
]
class
Model
()
:
class
InferenceModel
:
# 初始化函数
def
__init__
(
self
,
modelpath
,
use_gpu
=
False
,
use_mkldnn
=
True
,
combined
=
True
):
# 加载模型预测器
self
.
predictor
=
self
.
load_model
(
modelpath
,
use_gpu
,
use_mkldnn
,
combined
)
def
__init__
(
self
,
modelpath
,
use_gpu
=
False
,
gpu_id
=
0
,
use_mkldnn
=
False
,
cpu_threads
=
1
):
'''
init the inference model
modelpath: inference model path
use_gpu: use gpu or not
use_mkldnn: use mkldnn or not
'''
# 加载模型配置
self
.
config
=
self
.
load_config
(
modelpath
,
use_gpu
,
gpu_id
,
use_mkldnn
,
cpu_threads
)
# 获取模型的输入输出
self
.
input_names
=
self
.
predictor
.
get_input_names
()
self
.
output_names
=
self
.
predictor
.
get_output_names
()
self
.
input_handle
=
self
.
predictor
.
get_input_handle
(
self
.
input_names
[
0
])
self
.
output_handle
=
self
.
predictor
.
get_output_handle
(
self
.
output_names
[
0
])
# 打印函数
def
__repr__
(
self
):
'''
get the numbers and name of inputs and outputs
'''
return
'input_num: %d
\n
input_names: %s
\n
output_num: %d
\n
output_names: %s'
%
(
self
.
input_num
,
str
(
self
.
input_names
),
self
.
output_num
,
str
(
self
.
output_names
))
# 模型加载函数
def
load_model
(
self
,
modelpath
,
use_gpu
,
use_mkldnn
,
combined
):
# 类调用函数
def
__call__
(
self
,
*
input_datas
,
batch_size
=
1
):
'''
call function
'''
return
self
.
forward
(
*
input_datas
,
batch_size
=
batch_size
)
# 模型参数加载函数
def
load_config
(
self
,
modelpath
,
use_gpu
,
gpu_id
,
use_mkldnn
,
cpu_threads
):
'''
load the model config
modelpath: inference model path
use_gpu: use gpu or not
use_mkldnn: use mkldnn or not
'''
# 对运行位置进行配置
if
use_gpu
:
try
:
int
(
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
))
except
Exception
:
print
(
'
Error! Unable to use GPU. Please set the environment variables "CUDA_VISIBLE_DEVICES=GPU_id" to use GPU.
'
'
''Error! Unable to use GPU. Please set the environment variables "CUDA_VISIBLE_DEVICES=GPU_id" to use GPU. Now switch to CPU to continue...''
'
)
use_gpu
=
False
# 加载模型参数
if
combined
:
model
=
os
.
path
.
join
(
modelpath
,
"__model__"
)
params
=
os
.
path
.
join
(
modelpath
,
"__params__"
)
if
os
.
path
.
isdir
(
modelpath
):
if
os
.
path
.
exists
(
os
.
path
.
join
(
modelpath
,
"__params__"
)):
# __model__ + __params__
model
=
os
.
path
.
join
(
modelpath
,
"__model__"
)
params
=
os
.
path
.
join
(
modelpath
,
"__params__"
)
config
=
Config
(
model
,
params
)
elif
os
.
path
.
exists
(
os
.
path
.
join
(
modelpath
,
"params"
)):
# model + params
model
=
os
.
path
.
join
(
modelpath
,
"model"
)
params
=
os
.
path
.
join
(
modelpath
,
"params"
)
config
=
Config
(
model
,
params
)
elif
os
.
path
.
exists
(
os
.
path
.
join
(
modelpath
,
"__model__"
)):
# __model__ + others
config
=
Config
(
modelpath
)
else
:
raise
Exception
(
"Error! Can
\'
t find the model in: %s. Please check your model path."
%
os
.
path
.
abspath
(
modelpath
))
elif
os
.
path
.
exists
(
modelpath
+
".pdmodel"
):
# *.pdmodel + *.pdiparams
model
=
modelpath
+
".pdmodel"
params
=
modelpath
+
".pdiparams"
config
=
Config
(
model
,
params
)
elif
isinstance
(
modelpath
,
Config
):
config
=
modelpath
else
:
config
=
Config
(
modelpath
)
raise
Exception
(
"Error! Can
\'
t find the model in: %s. Please check your model path."
%
os
.
path
.
abspath
(
modelpath
))
# 设置参数
if
use_gpu
:
config
.
enable_use_gpu
(
100
,
0
)
config
.
enable_use_gpu
(
100
,
gpu_id
)
else
:
config
.
disable_gpu
()
config
.
set_cpu_math_library_num_threads
(
cpu_threads
)
if
use_mkldnn
:
config
.
enable_mkldnn
()
config
.
disable_glog_info
()
config
.
switch_ir_optim
(
True
)
config
.
enable_memory_optim
()
config
.
switch_use_feed_fetch_ops
(
False
)
config
.
switch_specify_input_names
(
True
)
#
通过参数加载模型预测器
predictor
=
create_predictor
(
config
)
#
返回配置
return
config
# 返回预测器
return
predictor
# 预测器创建函数
def
eval
(
self
):
'''
create the model predictor by model config
'''
# 创建预测器
self
.
predictor
=
create_predictor
(
self
.
config
)
# 模型预测函数
def
predict
(
self
,
input_datas
):
outputs
=
[]
# 获取模型的输入输出名称
self
.
input_names
=
self
.
predictor
.
get_input_names
()
self
.
output_names
=
self
.
predictor
.
get_output_names
()
# 获取模型的输入输出节点数量
self
.
input_num
=
len
(
self
.
input_names
)
self
.
output_num
=
len
(
self
.
output_names
)
# 获取输入
self
.
input_handles
=
[]
for
input_name
in
self
.
input_names
:
self
.
input_handles
.
append
(
self
.
predictor
.
get_input_handle
(
input_name
))
# 获取输出
self
.
output_handles
=
[]
for
output_name
in
self
.
output_names
:
self
.
output_handles
.
append
(
self
.
predictor
.
get_output_handle
(
output_name
))
# 前向计算函数
def
forward
(
self
,
*
input_datas
,
batch_size
=
1
):
"""
model inference
batch_size: batch size
*input_datas: x1, x2, ..., xn
"""
# 切分输入数据
datas_num
=
input_datas
[
0
].
shape
[
0
]
split_num
=
datas_num
//
batch_size
+
\
1
if
datas_num
%
batch_size
!=
0
else
datas_num
//
batch_size
input_datas
=
[
np
.
array_split
(
input_data
,
split_num
)
for
input_data
in
input_datas
]
# 遍历输入数据进行预测
for
input_data
in
input_datas
:
inputs
=
input_data
.
copy
()
self
.
input_handle
.
copy_from_cpu
(
inputs
)
outputs
=
{}
for
step
in
range
(
split_num
):
for
i
in
range
(
self
.
input_num
):
input_data
=
input_datas
[
i
][
step
].
copy
()
self
.
input_handles
[
i
].
copy_from_cpu
(
input_data
)
self
.
predictor
.
run
()
output
=
self
.
output_handle
.
copy_to_cpu
()
outputs
.
append
(
output
)
for
i
in
range
(
self
.
output_num
):
output
=
self
.
output_handles
[
i
].
copy_to_cpu
()
if
i
in
outputs
:
outputs
[
i
].
append
(
output
)
else
:
outputs
[
i
]
=
[
output
]
# 预测结果合并
outputs
=
np
.
concatenate
(
outputs
,
0
)
for
key
in
outputs
.
keys
():
outputs
[
key
]
=
np
.
concatenate
(
outputs
[
key
],
0
)
outputs
=
[
v
for
v
in
outputs
.
values
()]
# 返回预测结果
return
outputs
return
tuple
(
outputs
)
if
len
(
outputs
)
>
1
else
outputs
[
0
]
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/module.py
浏览文件 @
5ae5b5a0
import
os
from
paddlehub
import
Module
from
paddlehub.module.module
import
moduleinfo
,
serving
from
animegan_v2_paprika_54.model
import
Model
from
animegan_v2_paprika_54.processor
import
base64_to_cv2
,
cv2_to_base64
,
Processor
from
.model
import
InferenceModel
from
.processor
import
base64_to_cv2
from
.processor
import
cv2_to_base64
from
.processor
import
Processor
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.module
import
serving
@
moduleinfo
(
...
...
@@ -13,16 +14,18 @@ from animegan_v2_paprika_54.processor import base64_to_cv2, cv2_to_base64, Proce
author
=
"jm12138"
,
# 作者名称
author_email
=
"jm12138@qq.com"
,
# 作者邮箱
summary
=
"animegan_v2_paprika_54"
,
# 模型介绍
version
=
"1.
0.2
"
# 版本号
version
=
"1.
1.0
"
# 版本号
)
class
Animegan_V2_Paprika_54
(
Module
)
:
class
Animegan_V2_Paprika_54
:
# 初始化函数
def
__init__
(
self
,
name
=
None
,
use_gpu
=
False
):
def
__init__
(
self
,
use_gpu
=
False
,
use_mkldnn
=
False
):
# 设置模型路径
self
.
model_path
=
os
.
path
.
join
(
self
.
directory
,
"animegan_v2_paprika_54"
)
self
.
model_path
=
os
.
path
.
join
(
self
.
directory
,
"animegan_v2_paprika_54"
,
"model"
)
# 加载模型
self
.
model
=
Model
(
modelpath
=
self
.
model_path
,
use_gpu
=
use_gpu
,
use_mkldnn
=
False
,
combined
=
False
)
self
.
model
=
InferenceModel
(
modelpath
=
self
.
model_path
,
use_gpu
=
use_gpu
,
use_mkldnn
=
use_mkldnn
)
self
.
model
.
eval
()
# 关键点检测函数
def
style_transfer
(
self
,
...
...
@@ -33,11 +36,18 @@ class Animegan_V2_Paprika_54(Module):
min_size
=
32
,
max_size
=
1024
):
# 加载数据处理器
processor
=
Processor
(
images
=
images
,
paths
=
paths
,
batch_size
=
1
,
output_dir
=
output_dir
,
min_size
=
min_size
,
max_size
=
max_size
)
processor
=
Processor
(
images
=
images
,
paths
=
paths
,
batch_size
=
1
,
output_dir
=
output_dir
,
min_size
=
min_size
,
max_size
=
max_size
)
# 模型预测
outputs
=
self
.
model
.
predict
(
processor
.
input_datas
)
outputs
=
[]
for
input_data
in
processor
.
input_datas
:
output
=
self
.
model
(
input_data
)
outputs
.
append
(
output
)
# 结果后处理
results
=
processor
.
postprocess
(
outputs
,
visualization
)
...
...
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/processor.py
浏览文件 @
5ae5b5a0
import
base64
import
os
import
cv2
import
time
import
base64
import
cv2
import
numpy
as
np
__all__
=
[
'base64_to_cv2'
,
'cv2_to_base64'
,
'Processor'
]
...
...
modules/image/Image_gan/style_transfer/animegan_v2_paprika_54/test.py
0 → 100644
浏览文件 @
5ae5b5a0
import
os
import
shutil
import
unittest
import
cv2
import
numpy
as
np
import
requests
import
paddlehub
as
hub
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
class
TestHubModule
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
)
->
None
:
img_url
=
'https://unsplash.com/photos/mJaD10XeD7w/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8M3x8Y2F0fGVufDB8fHx8MTY2MzczNDc3Mw&force=true&w=640'
if
not
os
.
path
.
exists
(
'tests'
):
os
.
makedirs
(
'tests'
)
response
=
requests
.
get
(
img_url
)
assert
response
.
status_code
==
200
,
'Network Error.'
with
open
(
'tests/test.jpg'
,
'wb'
)
as
f
:
f
.
write
(
response
.
content
)
img
=
cv2
.
imread
(
'tests/test.jpg'
)
img
=
cv2
.
resize
(
img
,
(
0
,
0
),
fx
=
0.25
,
fy
=
0.25
)
cv2
.
imwrite
(
'tests/test.jpg'
,
img
)
cls
.
module
=
hub
.
Module
(
name
=
"animegan_v2_paprika_54"
)
@
classmethod
def
tearDownClass
(
cls
)
->
None
:
shutil
.
rmtree
(
'tests'
)
shutil
.
rmtree
(
'output'
)
def
test_style_transfer1
(
self
):
results
=
self
.
module
.
style_transfer
(
paths
=
[
'tests/test.jpg'
])
self
.
assertIsInstance
(
results
[
0
],
np
.
ndarray
)
def
test_style_transfer2
(
self
):
results
=
self
.
module
.
style_transfer
(
paths
=
[
'tests/test.jpg'
],
visualization
=
True
)
self
.
assertIsInstance
(
results
[
0
],
np
.
ndarray
)
def
test_style_transfer3
(
self
):
results
=
self
.
module
.
style_transfer
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)])
self
.
assertIsInstance
(
results
[
0
],
np
.
ndarray
)
def
test_style_transfer4
(
self
):
results
=
self
.
module
.
style_transfer
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)],
visualization
=
True
)
self
.
assertIsInstance
(
results
[
0
],
np
.
ndarray
)
def
test_style_transfer5
(
self
):
self
.
assertRaises
(
AssertionError
,
self
.
module
.
style_transfer
,
paths
=
[
'no.jpg'
])
def
test_style_transfer6
(
self
):
self
.
assertRaises
(
cv2
.
error
,
self
.
module
.
style_transfer
,
images
=
[
'tests/test.jpg'
])
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录