提交 582ecfc9 编写于 作者: Z Zeyu Chen

reorg demo

上级 e1d33b79
import paddle.fluid as fluid
import paddlehub as hub
# Step1
module = hub.Module(name="ernie")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Step2
dataset = hub.dataset.ChnSentiCorp()
reader = hub.reader.ClassifyReader(
dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=128)
# Step3
with fluid.program_guard(program):
label = fluid.layers.data(name="label", shape=[1], dtype='int64')
pooled_output = outputs["pooled_output"]
cls_task = hub.create_text_classification_task(
feature=pooled_output, label=label, num_classes=dataset.num_labels)
# Step4
strategy = hub.AdamWeightDecayStrategy(learning_rate=5e-5, weight_decay=0.01)
config = hub.RunConfig(
use_cuda=True, num_epoch=3, batch_size=32, strategy=strategy)
feed_list = [
inputs["input_ids"].name, inputs["position_ids"].name,
inputs["segment_ids"].name, inputs["input_mask"].name, label.name
]
hub.finetune_and_eval(
task=cls_task, data_reader=reader, feed_list=feed_list, config=config)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """
import argparse
import paddle.fluid as fluid
import paddlehub as hub
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.")
args = parser.parse_args()
# yapf: enable.
if __name__ == '__main__':
# Step1: load Paddlehub ERNIE pretrained model
module = hub.Module(name="ernie")
inputs, outputs, program = module.context(
trainable=True, max_seq_len=args.max_seq_len)
# Step2: Download dataset and use ClassifyReader to read dataset
dataset = hub.dataset.NLPCC_DBQA()
reader = hub.reader.ClassifyReader(
dataset=dataset,
vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len)
# Step3: construct transfer learning network
with fluid.program_guard(program):
label = fluid.layers.data(name="label", shape=[1], dtype='int64')
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
pooled_output = outputs["pooled_output"]
# Setup feed list for data feeder
# Must feed all the tensor of ERNIE's module need
feed_list = [
inputs["input_ids"].name, inputs["position_ids"].name,
inputs["segment_ids"].name, inputs["input_mask"].name, label.name
]
# Define a classfication finetune task by PaddleHub's API
cls_task = hub.create_text_classification_task(
pooled_output, label, num_classes=dataset.num_labels)
# Step4: Select finetune strategy, setup config and finetune
strategy = hub.AdamWeightDecayStrategy(
weight_decay=args.weight_decay,
learning_rate=args.learning_rate,
warmup_strategy="linear_warmup_decay",
)
# Setup runing config for PaddleHub Finetune API
config = hub.RunConfig(
use_cuda=True,
num_epoch=args.num_epoch,
batch_size=args.batch_size,
checkpoint_dir=args.checkpoint_dir,
strategy=strategy)
# Finetune and evaluate by PaddleHub's API
# will finish training, evaluation, testing, save model automatically
hub.finetune_and_eval(
task=cls_task,
data_reader=reader,
feed_list=feed_list,
config=config)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """
import argparse
import paddle.fluid as fluid
import paddlehub as hub
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.")
args = parser.parse_args()
# yapf: enable.
if __name__ == '__main__':
# Step1: load Paddlehub ERNIE pretrained model
module = hub.Module(name="ernie")
inputs, outputs, program = module.context(
trainable=True, max_seq_len=args.max_seq_len)
# Step2: Download dataset and use ClassifyReader to read dataset
dataset = hub.dataset.LCQMC()
reader = hub.reader.ClassifyReader(
dataset=dataset,
vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len)
# Step3: construct transfer learning network
with fluid.program_guard(program):
label = fluid.layers.data(name="label", shape=[1], dtype='int64')
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
pooled_output = outputs["pooled_output"]
# Setup feed list for data feeder
# Must feed all the tensor of ERNIE's module need
feed_list = [
inputs["input_ids"].name, inputs["position_ids"].name,
inputs["segment_ids"].name, inputs["input_mask"].name, label.name
]
# Define a classfication finetune task by PaddleHub's API
cls_task = hub.create_text_classification_task(
pooled_output, label, num_classes=dataset.num_labels)
# Step4: Select finetune strategy, setup config and finetune
strategy = hub.AdamWeightDecayStrategy(
weight_decay=args.weight_decay,
learning_rate=args.learning_rate,
warmup_strategy="linear_warmup_decay",
)
# Setup runing config for PaddleHub Finetune API
config = hub.RunConfig(
use_cuda=True,
num_epoch=args.num_epoch,
batch_size=args.batch_size,
checkpoint_dir=args.checkpoint_dir,
strategy=strategy)
# Finetune and evaluate by PaddleHub's API
# will finish training, evaluation, testing, save model automatically
hub.finetune_and_eval(
task=cls_task,
data_reader=reader,
feed_list=feed_list,
config=config)
export CUDA_VISIBLE_DEVICES=3
CKPT_DIR="./ckpt_dbqa"
python -u question_answering.py \
--batch_size 8 \
--weight_decay 0.01 \
--checkpoint_dir $CKPT_DIR \
--num_epoch 3 \
--max_seq_len 512 \
--learning_rate 2e-5
export CUDA_VISIBLE_DEVICES=5
CKPT_DIR="./ckpt_question_matching"
python -u question_matching.py \
--batch_size 32 \
--weight_decay 0.0 \
--checkpoint_dir $CKPT_DIR \
--num_epoch 3 \
--max_seq_len 128 \
--learning_rate 2e-5
export CUDA_VISIBLE_DEVICES=5
CKPT_DIR="./ckpt_sentiment_cls"
python -u sentiment_cls.py \
--batch_size 32 \
--use_gpu=False \
--weight_decay 0.01 \
--checkpoint_dir $CKPT_DIR \
--num_epoch 3 \
--max_seq_len 128 \
--learning_rate 5e-5
export CUDA_VISIBLE_DEVICES=6
export CUDA_VISIBLE_DEVICES=0
CKPT_DIR="./ckpt_sequence_labeling"
python -u sequence_labeling.py \
python -u sequence_label.py \
--batch_size 16 \
--weight_decay 0.01 \
--checkpoint_dir $CKPT_DIR \
......
......@@ -37,13 +37,12 @@ if __name__ == '__main__':
trainable=True, max_seq_len=args.max_seq_len)
# Step2: Download dataset and use SequenceLabelReader to read dataset
dataset = hub.dataset.MSRA_NER()
reader = hub.reader.SequenceLabelReader(
dataset=hub.dataset.MSRA_NER(),
dataset=dataset,
vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len)
num_labels = len(reader.get_labels())
# Step3: construct transfer learning network
with fluid.program_guard(program):
label = fluid.layers.data(
......@@ -62,11 +61,11 @@ if __name__ == '__main__':
seq_len
]
# Define a sequence labeling finetune task by PaddleHub's API
seq_label_task = hub.create_seq_labeling_task(
seq_label_task = hub.create_seq_label_task(
feature=sequence_output,
labels=label,
seq_len=seq_len,
num_classes=num_labels)
num_classes=dataset.num_labels)
# Select a finetune strategy
strategy = hub.AdamWeightDecayStrategy(
......
......@@ -64,7 +64,7 @@ if __name__ == '__main__':
]
# Define a classfication finetune task by PaddleHub's API
cls_task = hub.create_text_classification_task(
cls_task = hub.create_text_cls_task(
feature=pooled_output, label=label, num_classes=dataset.num_labels)
# classificatin probability tensor
......
export CUDA_VISIBLE_DEVICES=5
# User can select senticorp, nlpcc_dbqa, lcqmc for different task
DATASET="senticorp"
CKPT_DIR="./ckpt_${DATASET}"
# Recommending hyper parameters for difference task
# ChnSentiCorp: batch_size=24, weight_decay=0.01, num_epoch=3, max_seq_len=128, lr=5e-5
# NLPCC_DBQA: batch_size=8, weight_decay=0.01, num_epoch=3, max_seq_len=512, lr=2e-5
# LCQMC: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=2e-5
python -u text_classifier.py \
--batch_size=24 \
--use_gpu=True \
--dataset=${DATASET} \
--checkpoint_dir=${CKPT_DIR} \
--learning_rate=5e-5 \
--weight_decay=0.01 \
--max_seq_len=128
--num_epoch=3 \
......@@ -23,8 +23,10 @@ import paddlehub as hub
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for finetuning, input should be True or False")
parser.add_argument("--dataset", type=str, default="senticorp", help="Directory to model checkpoint")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
parser.add_argument("--warmup_proportion", type=float, default=0.0, help="Warmup proportion params for warmup strategy")
parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
......@@ -40,7 +42,16 @@ if __name__ == '__main__':
trainable=True, max_seq_len=args.max_seq_len)
# Step2: Download dataset and use ClassifyReader to read dataset
dataset = hub.dataset.ChnSentiCorp()
dataset = None
if args.dataset.lower() == "senticorp":
dataset = hub.dataset.ChnSentiCorp()
elif args.dataset.lower() == "nlpcc_dbqa":
dataset = hub.dataset.NLPCC_DBQA()
elif args.dataset.lower() == "lcqmc":
dataset = hub.dataset.LCQMC()
else:
raise ValueError("%s dataset is not defined" % args.dataset)
reader = hub.reader.ClassifyReader(
dataset=dataset,
vocab_path=module.get_vocab_path(),
......@@ -72,7 +83,6 @@ if __name__ == '__main__':
)
# Setup runing config for PaddleHub Finetune API
print(args.use_gpu)
config = hub.RunConfig(
use_cuda=args.use_gpu,
num_epoch=args.num_epoch,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册