Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
5696b870
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
281
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
5696b870
编写于
4月 02, 2019
作者:
W
wuzewu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update demo
上级
f4b8b6ab
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
11 addition
and
7 deletion
+11
-7
demo/image-classification/resources/module_info.yml
demo/image-classification/resources/module_info.yml
+2
-1
demo/image-classification/retrain.py
demo/image-classification/retrain.py
+1
-1
demo/lac/resources/module_info.yml
demo/lac/resources/module_info.yml
+1
-0
demo/senta/processor.py
demo/senta/processor.py
+4
-4
demo/senta/resources/module_info.yml
demo/senta/resources/module_info.yml
+2
-1
demo/ssd/resources/module_info.yml
demo/ssd/resources/module_info.yml
+1
-0
未找到文件。
demo/image-classification/resources/module_info.yml
浏览文件 @
5696b870
name
:
Resnet50
type
:
CV/classification
author
:
paddlepaddle
author-email
:
paddle-dev@baidu.com
author_email
:
paddle-dev@baidu.com
summary
:
"
Resnet50
is
a
model
used
to
image
classfication,
we
trained
this
model
on
ImageNet-2012
dataset."
version
:
1.0.0
demo/image-classification/retrain.py
浏览文件 @
5696b870
...
...
@@ -15,7 +15,7 @@ def train():
img
=
input_dict
[
0
]
feature_map
=
output_dict
[
0
]
config
=
hub
.
Finetune
Config
(
config
=
hub
.
Run
Config
(
use_cuda
=
True
,
num_epoch
=
10
,
batch_size
=
32
,
...
...
demo/lac/resources/module_info.yml
浏览文件 @
5696b870
...
...
@@ -2,4 +2,5 @@ name: lac
type
:
nlp/lexical_analysis
author
:
paddlepaddle
author_email
:
paddle-dev@baidu.com
summary
:
"
'Lexical
Analysis
of
Chinese',
which
abbreviated
as
LAC,
is
a
model
used
to
process
lexical
analysis.
People
can
use
LAC
to
process
Chinese
text
segmentation,
part-of-speech
tagging
and
named
entity
recognition"
version
:
1.0.0
demo/senta/processor.py
浏览文件 @
5696b870
...
...
@@ -52,14 +52,14 @@ class Processor(hub.BaseProcessor):
def
preprocess
(
self
,
sign_name
,
data_dict
):
result
=
{
'text'
:
[]}
processed
=
self
.
lac
.
segment
(
data
=
data_dict
)
processed
=
self
.
lac
.
lexical_analysis
(
data
=
data_dict
)
unk_id
=
len
(
self
.
word_dict
)
for
index
,
data
in
enumerate
(
processed
):
result_i
=
{
'processed'
:
[]}
result_i
[
'origin'
]
=
data_dict
[
'text'
][
index
]
for
result_dict
in
data
:
if
result_dict
[
'word'
]
in
self
.
word_dict
:
_index
=
self
.
word_dict
[
result_dict
[
'word'
]
]
for
word
in
data
[
'word'
]
:
if
word
in
self
.
word_dict
:
_index
=
self
.
word_dict
[
word
]
else
:
_index
=
unk_id
result_i
[
'processed'
].
append
(
_index
)
...
...
demo/senta/resources/module_info.yml
浏览文件 @
5696b870
name
:
senta
type
:
nlp/sentiment_analysis
author
:
paddlepaddle
author-email
:
paddle-dev@baidu.com
author_email
:
paddle-dev@baidu.com
summary
:
"
Senta
is
a
model
used
to
analyse
sentiment
tendency
of
Chinese
sentences.
We
divide
sentiment
tendencies
into
three
levels,
score
2
means
positive,
score
1
means
neuter,
and
score
0
means
negative"
version
:
1.0.0
demo/ssd/resources/module_info.yml
浏览文件 @
5696b870
...
...
@@ -2,4 +2,5 @@ name: ssd_mobilenet_v1_pascalvoc
type
:
CV/object-detection
author
:
paddlepaddle
author_email
:
paddle-dev@baidu.com
summary
:
"
SSD(Single
Shot
MultiBox
Detector)
is
a
object
detection
model
use
to
detect
target
category
and
location
in
a
image
picture.
This
model
is
trained
with
PASCAL
VOC
dataset,
and
therefore
provides
20
categories
of
recognition
capability,
which
mentioned
below
:
aeroplane,bicycle,bird,boat,bottle,bus,car,cat,chair,cow,diningtable,dog,horse,motorbike,person,pottedplant,sheep,sofa,train,tvmonitor"
version
:
1.0.0
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录