提交 4a0eb82e 编写于 作者: Z zhangxuefei

Merge branch 'release/v1.2' of https://github.com/PaddlePaddle/PaddleHub into release/v1.2

......@@ -28,7 +28,7 @@ PaddleHub AutoDL Finetuner为了评估搜索的超参对于任务的效果,提
* **Full-Trail**: 给定一组超参,利用这组超参从头开始Fine-tune一个新模型,之后在验证集评估这个模型
* **Model-Based**: 给定一组超参,若这组超参是第一轮尝试的超参组合,则从头开始Fine-tune一个新模型;否则基于前几轮已保存的较好模型,在当前的超参数组合下继续Fine-tune并评估。
* **Population-Based**: 给定一组超参,若这组超参是第一轮尝试的超参组合,则从头开始Fine-tune一个新模型;否则基于前几轮已保存的较好模型,在当前的超参数组合下继续Fine-tune并评估。
## 二、准备工作
......@@ -68,7 +68,7 @@ train.py用于接受PaddleHub搜索到的超参进行一次优化过程,将优
* train.py须包含选项参数saved_params_dir,优化后的参数将会保存到该路径下。
* 超参评估策略选择ModelBased时,train.py须包含选项参数model_path,自动从model_path指定的路径恢复模型
* 超参评估策略选择PopulationBased时,train.py须包含选项参数model_path,自动从model_path指定的路径恢复模型
* train.py须输出模型的评价效果(建议使用验证集或者测试集上的评价效果),输出以“AutoFinetuneEval"开始,与评价效果之间以“\t”分开,如
```python
......@@ -106,7 +106,7 @@ $ hub autofinetune train.py --param_file=hparam.yaml --cuda=['1','2'] --popsize=
> `--output_dir`: 可选,设置程序运行输出结果存放目录,不指定该选项参数时,在当前运行路径下生成存放程序运行输出信息的文件夹
> `--evaluate_choice`: 可选,设置自动优化超参的评价效果方式,可选fulltrail和modelbased, 默认为modelbased
> `--evaluate_choice`: 可选,设置自动优化超参的评价效果方式,可选fulltrail和populationbased, 默认为populationbased
> `--tuning_strategy`: 可选,设置自动优化超参策略,可选hazero和pshe2,默认为pshe2
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册