未验证 提交 45da2907 编写于 作者: S Steffy-zxf 提交者: GitHub

Update README.md

上级 9fbbe375
......@@ -17,11 +17,9 @@
--num_epoch: Finetune迭代的轮数
--max_seq_len: BERT模型使用的最大序列长度,最大不能超过512, 若出现显存不足,请适当调低这一参数
--use_data_parallel: 是否使用并行计算,默认False。打开该功能依赖nccl库。
--use_pyreader: 是否使用pyreader,默认False。
# 任务相关
--checkpoint_dir: 模型保存路径,PaddleHub会自动保存验证集上表现最好的模型
--version_2_with_negative: 若version_2_with_negative=False,则使用SQuAD 1.1数据集;若version_2_with_negative=True,则使用SQuAD 2.0数据集;
```
## 代码步骤
......@@ -36,6 +34,33 @@ inputs, outputs, program = module.context(trainable=True, max_seq_len=384)
```
其中最大序列长度`max_seq_len`是可以调整的参数,建议值384,根据任务文本长度不同可以调整该值,但最大不超过512。
PaddleHub还提供BERT等模型可供选择, 模型对应的加载示例如下:
模型名 | PaddleHub Module
---------------------------------- | :------:
ERNIE, Chinese | `hub.Module(name='ernie')`
ERNIE tiny, Chinese | `hub.Module(name='ernie_tiny')`
ERNIE 2.0 Base, English | `hub.Module(name='ernie_v2_eng_base')`
ERNIE 2.0 Large, English | `hub.Module(name='ernie_v2_eng_large')`
BERT-Base, Uncased | `hub.Module(name='bert_uncased_L-12_H-768_A-12')`
BERT-Large, Uncased | `hub.Module(name='bert_uncased_L-24_H-1024_A-16')`
BERT-Base, Cased | `hub.Module(name='bert_cased_L-12_H-768_A-12')`
BERT-Large, Cased | `hub.Module(name='bert_cased_L-24_H-1024_A-16')`
BERT-Base, Multilingual Cased | `hub.Module(nane='bert_multi_cased_L-12_H-768_A-12')`
BERT-Base, Chinese | `hub.Module(name='bert_chinese_L-12_H-768_A-12')`
BERT-wwm, Chinese | `hub.Module(name='bert_wwm_chinese_L-12_H-768_A-12')`
BERT-wwm-ext, Chinese | `hub.Module(name='bert_wwm_ext_chinese_L-12_H-768_A-12')`
RoBERTa-wwm-ext, Chinese | `hub.Module(name='roberta_wwm_ext_chinese_L-12_H-768_A-12')`
RoBERTa-wwm-ext-large, Chinese | `hub.Module(name='roberta_wwm_ext_chinese_L-24_H-1024_A-16')`
更多模型请参考[PaddleHub官网](https://www.paddlepaddle.org.cn/hub?filter=hot&value=1)
如果想尝试BERT模型,只需要更换Module中的`name`参数即可.
```python
# 更换name参数即可无缝切换BERT中文模型, 代码示例如下
module = hub.Module(name="bert_chinese_L-12_H-768_A-12")
```
### Step2: 准备数据集并使用ReadingComprehensionReader读取数据
```python
dataset = hub.dataset.SQUAD(
......@@ -43,14 +68,12 @@ dataset = hub.dataset.SQUAD(
reader = hub.reader.ReadingComprehensionReader(
dataset=dataset,
vocab_path=module.get_vocab_path(),
max_seq_length=args.max_seq_len,
doc_stride=128,
max_query_length=64)
max_seq_length=384)
```
其中数据集的准备代码可以参考 [squad.py](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.2/paddlehub/dataset/squad.py)
`hub.dataset.SQUAD()` 会自动从网络下载数据集并解压到用户目录下`$HOME/.paddlehub/dataset`目录
`hub.dataset.SQUAD(version_2_with_negative=False)` 会自动从网络下载数据集SQuAD v1.1并解压到用户目录下`$HOME/.paddlehub/dataset`目录;如果想选择数据集SQuAD v2.0,则只需version_2_with_negative=True
`module.get_vocab_path()` 会返回预训练模型对应的词表
......@@ -60,21 +83,33 @@ ReadingComprehensionReader中的`data_generator`会自动按照模型对应词
**NOTE**: Reader返回tensor的顺序是固定的,默认按照input_ids, position_ids, segment_id, input_mask这一顺序返回。
PaddleHub还提供了其他的阅读理解数据集,具体信息如下表:
数据集 | API | 推荐预训练模型 |
------------- | ------------------------------------------------------------------- |--------------------------------------- |
SQuAD v1.1 | hub.dataset.SQUAD(version_2_with_negative=False) | bert_uncased_L-12_H-768_A-12 |
SQuAD v2.0 | hub.dataset.SQUAD(version_2_with_negative=True) | bert_uncased_L-12_H-768_A-12 |
DRCD | hub.dataset.DRCD() |roberta_wwm_ext_chinese_L-24_H-1024_A-16|
CMRC 2018 | hub.dataset.CMRC2018() |roberta_wwm_ext_chinese_L-24_H-1024_A-16|
更多数据集信息参考[Dataset](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub-API:-Dataset)
如何加载自定义数据集完成Finetune参考[自定义数据](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub%E9%80%82%E9%85%8D%E8%87%AA%E5%AE%9A%E4%B9%89%E6%95%B0%E6%8D%AE%E5%AE%8C%E6%88%90FineTune)
### Step3:选择优化策略和运行配置
```python
strategy = hub.AdamWeightDecayStrategy(
learning_rate=5e-5,
weight_decay=0.01,
warmup_proportion=0.0,
lr_scheduler="linear_decay",
warmup_proportion=0.1
)
config = hub.RunConfig(use_cuda=True, num_epoch=2, batch_size=12, strategy=strategy)
```
#### 优化策略
针对ERNIE与BERT类任务,PaddleHub封装了适合这一任务的迁移学习优化策略`AdamWeightDecayStrategy`
针对ERNIE/BERT类Transformer模型,PaddleHub封装了适合这一任务的迁移学习优化策略`AdamWeightDecayStrategy`
`learning_rate`: Finetune过程中的最大学习率;
......@@ -82,7 +117,9 @@ config = hub.RunConfig(use_cuda=True, num_epoch=2, batch_size=12, strategy=strat
`warmup_proportion`: 如果warmup_proportion>0, 例如0.1, 则学习率会在前10%的steps中线性增长至最高值learning_rate;
`lr_scheduler`: 有两种策略可选(1) `linear_decay`策略学习率会在最高点后以线性方式衰减; `noam_decay`策略学习率会在最高点以多项式形式衰减;
`lr_scheduler`: 有两种策略可选(1)`linear_decay`策略学习率会在最高点后以线性方式衰减; (2)`noam_decay`策略学习率会在最高点以多项式形式衰减;
PaddleHub提供了许多优化策略,如`AdamWeightDecayStrategy``ULMFiTStrategy``DefaultFinetuneStrategy`等,详细信息参见[策略](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub-API:-Strategy)
#### 运行配置
`RunConfig` 主要控制Finetune的训练,包含以下可控制的参数:
......@@ -113,13 +150,16 @@ reading_comprehension_task = hub.ReadingComprehensionTask(
data_reader=reader,
feature=seq_output,
feed_list=feed_list,
config=config)
config=config,
sub_task="squad")
reading_comprehension_task.finetune_and_eval()
```
**NOTE:**
1. `outputs["sequence_output"]`返回了BERT模型输入单词的对应输出,可以用于单词的特征表达。
2. `feed_list`中的inputs参数指名了BERT中的输入tensor的顺序,与ClassifyReader返回的结果一致。
1. `outputs["sequence_output"]`返回了ERNIE/BERT模型输入单词的对应输出,可以用于单词的特征表达。
2. `feed_list`中的inputs参数指名了BERT中的输入tensor的顺序,与ReadingComprehensionReader返回的结果一致。
3. `sub_task`指明阅读理解数据集名称,可选{squad, squad2.0, cmrc2018, drcd}, 用于适配各个数据集的模型训练过程中的评估方法
4. `hub.ReadingComprehensionTask`通过输入特征、段落背景、问题和答案,可以生成适用于阅读理解迁移任务ReadingComprehensionTask
## 可视化
......@@ -136,11 +176,11 @@ $ tensorboard --logdir $CKPT_DIR/visualization --host ${HOST_IP} --port ${PORT_N
```bash
CKPT_DIR=".ckpt_rc/"
python predict.py --checkpoint_dir $CKPT_DIR --max_seq_len 384 --batch_size=12 --version_2_with_negative=False
python predict.py --checkpoint_dir $CKPT_DIR --max_seq_len 384 --batch_size=1
```
其中CKPT_DIR为Finetune API保存最佳模型的路径, max_seq_len是ERNIE模型的最大序列长度,*请与训练时配置的参数保持一致*
其中CKPT_DIR为Finetune API保存最佳模型的路径, max_seq_len是ERNIE/BERT模型的最大序列长度,*请与训练时配置的参数保持一致*
参数配置正确后,请执行脚本`sh run_predict.sh`,预测时程序会自动调用官方评价脚本(version_2_with_negative=False调用evaluate_v1.py,version_2_with_negative=True调用evaluate_v2.py)即可看到SQuAD数据集的最终效果。
参数配置正确后,请执行脚本`sh run_predict.sh`,预测时程序会自动调用官方评价脚本即可看到SQuAD数据集的最终效果。
如需了解更多预测步骤,请参考`predict.py`
**NOTE:**
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册