提交 3eed05b4 编写于 作者: W wuzewu

add visualdl log

上级 34868288
...@@ -21,6 +21,7 @@ import time ...@@ -21,6 +21,7 @@ import time
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from visualdl import LogWriter
from paddle_hub.tools.logger import logger from paddle_hub.tools.logger import logger
from paddle_hub.finetune.optimization import bert_finetune from paddle_hub.finetune.optimization import bert_finetune
...@@ -46,6 +47,8 @@ def _finetune_model(task, ...@@ -46,6 +47,8 @@ def _finetune_model(task,
with_memory_optimization = config.with_memory_optimization with_memory_optimization = config.with_memory_optimization
checkpoint_dir = config.checkpoint_dir checkpoint_dir = config.checkpoint_dir
checkpoint_path = os.path.join(checkpoint_dir, CKPT_FILE) checkpoint_path = os.path.join(checkpoint_dir, CKPT_FILE)
log_writter = LogWriter(
os.path.join(checkpoint_dir, "vdllog"), sync_cycle=10)
with fluid.program_guard(main_program, startup_program): with fluid.program_guard(main_program, startup_program):
if use_cuda: if use_cuda:
...@@ -93,7 +96,17 @@ def _finetune_model(task, ...@@ -93,7 +96,17 @@ def _finetune_model(task,
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
step = 0 step = 0
last_epoch = 0 last_epoch = 0
best_eval_acc = 0
logger.info("Finetune start") logger.info("Finetune start")
# add visualdl scalar
with log_writter.mode("train") as logw:
train_loss_scalar = logw.scalar(tag="loss[train]")
train_acc_scalar = logw.scalar(tag="accuracy[train]")
with log_writter.mode("evaluate") as logw:
eval_loss_scalar = logw.scalar(tag="loss[evaluate]")
eval_acc_scalar = logw.scalar(tag="accuracy[evaluate]")
train_time_begin = time.time() train_time_begin = time.time()
for index in range(last_epoch, epoch): for index in range(last_epoch, epoch):
train_reader = data_processor.data_generator( train_reader = data_processor.data_generator(
...@@ -108,6 +121,7 @@ def _finetune_model(task, ...@@ -108,6 +121,7 @@ def _finetune_model(task,
accuracy_sum += accuracy_v * len(batch) accuracy_sum += accuracy_v * len(batch)
loss_sum += loss_v * len(batch) loss_sum += loss_v * len(batch)
# print log
if step % config.log_interval == 0: if step % config.log_interval == 0:
train_time_used = time.time() - train_time_begin train_time_used = time.time() - train_time_begin
speed = config.log_interval / train_time_used speed = config.log_interval / train_time_used
...@@ -115,6 +129,13 @@ def _finetune_model(task, ...@@ -115,6 +129,13 @@ def _finetune_model(task,
logger.info( logger.info(
"step %d: loss=%.5f acc=%.5f [step/sec: %.2f]" % "step %d: loss=%.5f acc=%.5f [step/sec: %.2f]" %
(step, loss_sum / size, accuracy_sum / size, speed)) (step, loss_sum / size, accuracy_sum / size, speed))
# record visualdl log
record_step = step
train_loss_scalar.add_record(record_step, loss_sum / size)
train_acc_scalar.add_record(record_step,
accuracy_sum / size)
size = accuracy_sum = loss_sum = 0 size = accuracy_sum = loss_sum = 0
if step % config.save_ckpt_interval == 0: if step % config.save_ckpt_interval == 0:
...@@ -128,12 +149,21 @@ def _finetune_model(task, ...@@ -128,12 +149,21 @@ def _finetune_model(task,
last_model_dir=model_save_dir) last_model_dir=model_save_dir)
if eval_model and step % config.eval_interval == 0: if eval_model and step % config.eval_interval == 0:
eval( eval_loss, eval_acc, eval_perf = evaluate(
task, task,
data_processor, data_processor,
feed_list, feed_list,
phase="validate", phase="validate",
config=config) config=config)
record_step = step
eval_loss_scalar.add_record(record_step, eval_loss)
eval_acc_scalar.add_record(record_step, eval_acc)
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
model_save_dir = os.path.join(checkpoint_dir,
"model_best")
fluid.io.save_persistables(exe, dirname=model_save_dir)
# update model and checkpoint # update model and checkpoint
model_save_dir = os.path.join(checkpoint_dir, "model_latest") model_save_dir = os.path.join(checkpoint_dir, "model_latest")
fluid.io.save_persistables(exe, dirname=model_save_dir) fluid.io.save_persistables(exe, dirname=model_save_dir)
...@@ -144,7 +174,8 @@ def _finetune_model(task, ...@@ -144,7 +174,8 @@ def _finetune_model(task,
last_model_dir=model_save_dir) last_model_dir=model_save_dir)
# eval before end # eval before end
if eval_model: if eval_model:
eval(task, data_processor, feed_list, phase="test", config=config) evaluate(
task, data_processor, feed_list, phase="test", config=config)
logger.info("Finetune finished") logger.info("Finetune finished")
...@@ -156,7 +187,7 @@ def finetune(task, data_processor, feed_list, config=None): ...@@ -156,7 +187,7 @@ def finetune(task, data_processor, feed_list, config=None):
_finetune_model(task, data_processor, feed_list, config, eval_model=False) _finetune_model(task, data_processor, feed_list, config, eval_model=False)
def eval(task, data_processor, feed_list, phase="test", config=None): def evaluate(task, data_processor, feed_list, phase="test", config=None):
inference_program = task.inference_program() inference_program = task.inference_program()
main_program = task.main_program() main_program = task.main_program()
loss = task.variable("loss") loss = task.variable("loss")
...@@ -181,3 +212,5 @@ def eval(task, data_processor, feed_list, phase="test", config=None): ...@@ -181,3 +212,5 @@ def eval(task, data_processor, feed_list, phase="test", config=None):
eval_speed = index / eval_time_used eval_speed = index / eval_time_used
logger.info("[Evaluation] loss=%.5f acc=%.5f [step/sec: %.2f]" % logger.info("[Evaluation] loss=%.5f acc=%.5f [step/sec: %.2f]" %
(loss_sum / size, accuracy_sum / size, eval_speed)) (loss_sum / size, accuracy_sum / size, eval_speed))
return loss_sum / size, accuracy_sum / size, eval_speed
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册