“876e77a3f160d1df101b312751272ddf81518163”上不存在“git@gitcode.net:s920243400/PaddleDetection.git”
提交 3e0664b6 编写于 作者: W wuzewu

Merge branch 'release/v1.5' into develop

from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import io, re
import sys, os
import subprocess
import platform
COPYRIGHT = '''
Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
LANG_COMMENT_MARK = None
NEW_LINE_MARK = None
COPYRIGHT_HEADER = None
if platform.system() == "Windows":
NEW_LINE_MARK = "\r\n"
else:
NEW_LINE_MARK = '\n'
COPYRIGHT_HEADER = COPYRIGHT.split(NEW_LINE_MARK)[1]
p = re.search('(\d{4})', COPYRIGHT_HEADER).group(0)
process = subprocess.Popen(["date", "+%Y"], stdout=subprocess.PIPE)
date, err = process.communicate()
date = date.decode("utf-8").rstrip("\n")
COPYRIGHT_HEADER = COPYRIGHT_HEADER.replace(p, date)
def generate_copyright(template, lang='C'):
if lang == 'Python':
LANG_COMMENT_MARK = '#'
else:
LANG_COMMENT_MARK = "//"
lines = template.split(NEW_LINE_MARK)
BLANK = " "
ans = LANG_COMMENT_MARK + BLANK + COPYRIGHT_HEADER + NEW_LINE_MARK
for lino, line in enumerate(lines):
if lino == 0 or lino == 1 or lino == len(lines) - 1: continue
if len(line) == 0:
BLANK = ""
else:
BLANK = " "
ans += LANG_COMMENT_MARK + BLANK + line + NEW_LINE_MARK
return ans + "\n"
def lang_type(filename):
if filename.endswith(".py"):
return "Python"
elif filename.endswith(".h"):
return "C"
elif filename.endswith(".c"):
return "C"
elif filename.endswith(".hpp"):
return "C"
elif filename.endswith(".cc"):
return "C"
elif filename.endswith(".cpp"):
return "C"
elif filename.endswith(".cu"):
return "C"
elif filename.endswith(".cuh"):
return "C"
elif filename.endswith(".go"):
return "C"
elif filename.endswith(".proto"):
return "C"
else:
print("Unsupported filetype %s", filename)
exit(0)
PYTHON_ENCODE = re.compile("^[ \t\v]*#.*?coding[:=][ \t]*([-_.a-zA-Z0-9]+)")
def main(argv=None):
parser = argparse.ArgumentParser(
description='Checker for copyright declaration.')
parser.add_argument('filenames', nargs='*', help='Filenames to check')
args = parser.parse_args(argv)
retv = 0
for filename in args.filenames:
fd = io.open(filename, encoding="utf-8")
first_line = fd.readline()
second_line = fd.readline()
if "COPYRIGHT (C)" in first_line.upper(): continue
if first_line.startswith("#!") or PYTHON_ENCODE.match(
second_line) != None or PYTHON_ENCODE.match(first_line) != None:
continue
original_contents = io.open(filename, encoding="utf-8").read()
new_contents = generate_copyright(
COPYRIGHT, lang_type(filename)) + original_contents
print('Auto Insert Copyright Header {}'.format(filename))
retv = 1
with io.open(filename, 'w') as output_file:
output_file.write(new_contents)
return retv
if __name__ == '__main__':
exit(main())
---
name: 需求反馈
about: 需求建议
title: "[Feature]"
title: ''
labels: ''
assignees: ''
......
---
name: BUG反馈
about: PaddleHub Bug反馈
title: "[BUG]"
title: ''
labels: ''
assignees: ''
......
......@@ -30,12 +30,3 @@
- --show-source
- --statistics
files: \.py$
- repo: local
hooks:
- id: copyright_checker
name: copyright_checker
entry: python ./.copyright.hook
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$
exclude: (?!.*third_party)^.*$
......@@ -2,6 +2,9 @@
目前PaddleHub有以下任务示例:
* [图像分类](./mask_detection)
提供了基于完整的口罩人脸检测及分类的模型搭建的完整的视频级别Demo,同时提供基于飞桨高性能预测库的C++和Python部署方案。
* [图像分类](./image_classification)
该样例展示了PaddleHub如何将ResNet50、ResNet101、ResNet152、MobileNet、NasNet以及PNasNet作为预训练模型在Flowers、DogCat、Indoor67、Food101、StanfordDogs等数据集上进行图像分类的FineTune和预测。
......
# 基于PaddleHub实现口罩佩戴检测应用
本文档基于飞桨本次开源的口罩佩戴识别模型, 提供了一个完整的支持视频流的Web Demo,以及高性能的Python和C++集成部署方案, 适用于不同场景下的软件集成。
## 目录
- [1. 搭建视频流场景的WebDemo](#1-搭建视频流场景webdemo)
- [2. 高性能Python部署方案](#2-高性能Python部署方案)
- [3. 高性能C++部署方案](#3-高性能c部署方案)
## 1. 搭建视频流场景WebDemo
![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/BB6BC87A45D146CEBA7BF237B5383835?ynotemdtimestamp=1582271320612)
### [>点击查看视频链接<](https://www.bilibili.com/video/av88962128)
### 背景
本项目可以部署在大型场馆出入口,学校,医院,交通通道出入口,人脸识别闸机,机器人上,支持的方案有:安卓方案(如RK3399的人脸识别机,机器人),Ubuntu 边缘计算,WindowsPC+摄像头,识别率80%~90%,如果立项使用场景可以达到 99% (如:人脸识别机场景)。但是限于清晰度和遮挡关系,对应用场景有一些要求。
### 效果分析
可以看到识别率在80~90%之前,稍小的人脸有误识别的情况,有些挡住嘴的场景也被误识别成了戴口罩,一个人带着口罩,鼻子漏出来识别成没有戴口罩,这个是合理的因为的鼻子漏出来是佩戴不规范。这个模型应用在门口,狭长通道,人脸识别机所在位置都是可以的。
![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/7E12DBD91D1D4AB5B33C84786D519065?ynotemdtimestamp=1582271320612)![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/2BD974FB990C4C448B30B04194545054?ynotemdtimestamp=1582271320612)![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/E49E34A071F8484D948511430FAB0360?ynotemdtimestamp=1582271320612)
### 1.1 部署环境
参考: https://www.paddlepaddle.org.cn/install/quick
#### 安装paddlehub
`pip install paddlehub`
### 1.2 开发识别服务
#### 加载预训练模型
```python
import paddlehub as hub
module = hub.Module(name="pyramidbox_lite_server_mask", version='1.1.0') #口罩检测模型
```
>以上语句paddlehub会自动下载口罩检测模型 "pyramidbox_lite_mobile_mask" 不需要提前下载模型
#### OpenCV打开摄像头或视频文件
下载测试视频
```
wget https://paddlehub.bj.bcebos.com/mask_detection/test_video.mp4
```
```python
import cv2
capture = cv2.VideoCapture(0) # 打开摄像头
# capture = cv2.VideoCapture('./test_video.mp4') # 打开视频文件
while(1):
ret, frame = capture.read() # frame即视频的一帧数据
if ret == False:
break
cv2.imshow('Mask Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
```
#### 口罩佩戴检测
```python
# frame为一帧数据
input_dict = {"data": [frame]}
results = module.face_detection(data=input_dict)
print(results)
```
输出结果:
```json
[
{
"data": {
"label": "MASK",
"left": 258.37087631225586,
"right": 374.7980499267578,
"top": 122.76758193969727,
"bottom": 254.20085906982422,
"confidence": 0.5630852
},
"id": 1
}
]
```
>"label":是否戴口罩,"confidence":置信度,其余字段为脸框的位置大小
#### 将结果显示到原视频帧中
```python
# results为口罩检测结果
for result in results:
# print(result)
label = result['data']['label']
confidence = result['data']['confidence']
top, right, bottom, left = int(result['data']['top']), int(result['data']['right']), int(result['data']['bottom']), int(result['data']['left'])
color = (0, 255, 0)
if label == 'NO MASK':
color = (0, 0, 255)
cv2.rectangle(frame, (left, top), (right, bottom), color, 3)
cv2.putText(frame, label + ":" + str(confidence), (left, top-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
```
![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/F85FCBCA17994C8691024381CBDAFCA7?ynotemdtimestamp=1582271320612)
>原DEMO中是英文+置信度显示在框的上面,尝试改为中文,遇到字体问题,以下是解决办法
#### 图片写入中文
需要事先准备ttf/otf等格式的字体文件
```python
def paint_chinese_opencv(im,chinese,position,fontsize,color_bgr):
img_PIL = Image.fromarray(cv2.cvtColor(im,cv2.COLOR_BGR2RGB)) # 图像从OpenCV格式转换成PIL格式
font = ImageFont.truetype('思源黑体SC-Heavy.otf',fontsize,encoding="utf-8") # 加载字体文件
#color = (255,0,0) # 字体颜色
#position = (100,100) # 文字输出位置
color = color_bgr[::-1]
draw = ImageDraw.Draw(img_PIL)
# PIL图片上打印汉字 # 参数1:打印坐标,参数2:文本,参数3:字体颜色,参数4:字体
draw.text(position,chinese,font=font,fill=color)
img = cv2.cvtColor(np.asarray(img_PIL),cv2.COLOR_RGB2BGR)# PIL图片转cv2图片
return img
```
```python
for result in results:
label = result['data']['label']
confidence = result['data']['confidence']
top, right, bottom, left = int(result['data']['top']), int(result['data']['right']), int(result['data']['bottom']), int(result['data']['left'])
color = (0, 255, 0)
label_cn = "有口罩"
if label == 'NO MASK':
color = (0, 0, 255)
label_cn = "无口罩"
cv2.rectangle(frame, (left, top), (right, bottom), color, 3)
# cv2.putText(frame, label + ":" + str(confidence), (left, top-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
frame = paint_chinese_opencv(frame, label_cn + ":" + str(confidence), (left, top-36), 24, color)
```
![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/4F75E5C6F42F4C3CBE1341742D032847?ynotemdtimestamp=1582271320612)
#### 提取头像文件
```python
img_name = "avatar_%d.png" % (maskIndex)
path = "./result/" + img_name
image = frame[top - 10: bottom + 10, left - 10: right + 10]
cv2.imwrite(path, image,[int(cv2.IMWRITE_PNG_COMPRESSION), 9])
```
#### 结果写入JSON
```python
with open("./result/2-mask_detection.json","w") as f:
json.dump(data, f)
```
>此处可以按照自己的应用需要改为输出到mysql,Redis,kafka ,MQ 供应用消化数据
完整代码可以参考`mask_detection.py`
### 1.3 制作网页呈现效果
此DEMO是显示一个固定视频,分析导出的 json 渲染到网页里面,如需实时显示需要再次开发
#### python 导出的数据
使用上面的 python 文件完整执行后会有3个种类的数据输出,放到`web/video/result`目录下
![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/329AC9C2D89447EABE6B8C45D620441E?ynotemdtimestamp=1582271320612)
#### json数据结构
![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/5D46F32061B047D4AB0AC016FE2A63A5?ynotemdtimestamp=1582271320612)
#### 使用数据渲染网页
- 网页中左侧 "视频播放视频区",播放同时实时回调当前播放的时间点
- 根据时间点换算为帧(1秒30帧),遍历 json 数据中的数据
- 把数据中对应的数据输出到网页右侧 "信息区"
![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/6329B326216A4950BF35E0CB37CDC58F?ynotemdtimestamp=1582271320612)
## 2. 高性能Python部署方案
更多信息可以参考[文档](./python/README.md)
## 3. 高性能C++部署方案
更多信息可以参考[文档](./cpp/README.md)
## 欢迎交流
**百度飞桨合作伙伴:**
![image](https://note.youdao.com/yws/public/resource/b0a4695bc7d58aed3b1ff797409aee1e/DC72DE1CF51747138871BB0E3D54E20D?ynotemdtimestamp=1582271320612)
北京奇想天外科技有限公司
cmake_minimum_required(VERSION 3.0)
project(PaddleMaskDetector CXX C)
option(WITH_MKL "Compile demo with MKL/OpenBlas support,defaultuseMKL." ON)
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." ON)
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
option(USE_TENSORRT "Compile demo with TensorRT." OFF)
SET(PADDLE_DIR "" CACHE PATH "Location of libraries")
SET(OPENCV_DIR "" CACHE PATH "Location of libraries")
SET(CUDA_LIB "" CACHE PATH "Location of libraries")
macro(safe_set_static_flag)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
endmacro()
if (WITH_MKL)
ADD_DEFINITIONS(-DUSE_MKL)
endif()
if (NOT DEFINED PADDLE_DIR OR ${PADDLE_DIR} STREQUAL "")
message(FATAL_ERROR "please set PADDLE_DIR with -DPADDLE_DIR=/path/paddle_influence_dir")
endif()
if (NOT DEFINED OPENCV_DIR OR ${OPENCV_DIR} STREQUAL "")
message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv")
endif()
include_directories("${CMAKE_SOURCE_DIR}/")
include_directories("${PADDLE_DIR}/")
include_directories("${PADDLE_DIR}/third_party/install/protobuf/include")
include_directories("${PADDLE_DIR}/third_party/install/glog/include")
include_directories("${PADDLE_DIR}/third_party/install/gflags/include")
include_directories("${PADDLE_DIR}/third_party/install/xxhash/include")
if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/include")
include_directories("${PADDLE_DIR}/third_party/install/snappy/include")
endif()
if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/include")
include_directories("${PADDLE_DIR}/third_party/install/snappystream/include")
endif()
include_directories("${PADDLE_DIR}/third_party/install/zlib/include")
include_directories("${PADDLE_DIR}/third_party/boost")
include_directories("${PADDLE_DIR}/third_party/eigen3")
if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/lib")
link_directories("${PADDLE_DIR}/third_party/install/snappy/lib")
endif()
if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/lib")
link_directories("${PADDLE_DIR}/third_party/install/snappystream/lib")
endif()
link_directories("${PADDLE_DIR}/third_party/install/zlib/lib")
link_directories("${PADDLE_DIR}/third_party/install/protobuf/lib")
link_directories("${PADDLE_DIR}/third_party/install/glog/lib")
link_directories("${PADDLE_DIR}/third_party/install/gflags/lib")
link_directories("${PADDLE_DIR}/third_party/install/xxhash/lib")
link_directories("${PADDLE_DIR}/paddle/lib/")
link_directories("${CMAKE_CURRENT_BINARY_DIR}")
if (WIN32)
include_directories("${PADDLE_DIR}/paddle/fluid/inference")
include_directories("${PADDLE_DIR}/paddle/include")
link_directories("${PADDLE_DIR}/paddle/fluid/inference")
include_directories("${OPENCV_DIR}/build/include")
include_directories("${OPENCV_DIR}/opencv/build/include")
link_directories("${OPENCV_DIR}/build/x64/vc14/lib")
else ()
include_directories("${PADDLE_DIR}/paddle/include")
link_directories("${PADDLE_DIR}/paddle/lib")
include_directories("${OPENCV_DIR}/include")
link_directories("${OPENCV_DIR}/lib64")
endif ()
if (WIN32)
add_definitions("/DGOOGLE_GLOG_DLL_DECL=")
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT")
if (WITH_STATIC_LIB)
safe_set_static_flag()
add_definitions(-DSTATIC_LIB)
endif()
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -o2 -fopenmp -std=c++11")
set(CMAKE_STATIC_LIBRARY_PREFIX "")
endif()
# TODO let users define cuda lib path
if (WITH_GPU)
if (NOT DEFINED CUDA_LIB OR ${CUDA_LIB} STREQUAL "")
message(FATAL_ERROR "please set CUDA_LIB with -DCUDA_LIB=/path/cuda-8.0/lib64")
endif()
if (NOT WIN32)
if (NOT DEFINED CUDNN_LIB)
message(FATAL_ERROR "please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn_v7.4/cuda/lib64")
endif()
endif(NOT WIN32)
endif()
if (NOT WIN32)
if (USE_TENSORRT AND WITH_GPU)
include_directories("${PADDLE_DIR}/third_party/install/tensorrt/include")
link_directories("${PADDLE_DIR}/third_party/install/tensorrt/lib")
endif()
endif(NOT WIN32)
if (NOT WIN32)
set(NGRAPH_PATH "${PADDLE_DIR}/third_party/install/ngraph")
if(EXISTS ${NGRAPH_PATH})
include(GNUInstallDirs)
include_directories("${NGRAPH_PATH}/include")
link_directories("${NGRAPH_PATH}/${CMAKE_INSTALL_LIBDIR}")
set(NGRAPH_LIB ${NGRAPH_PATH}/${CMAKE_INSTALL_LIBDIR}/libngraph${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
endif()
if(WITH_MKL)
include_directories("${PADDLE_DIR}/third_party/install/mklml/include")
if (WIN32)
set(MATH_LIB ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.lib
${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.lib)
else ()
set(MATH_LIB ${PADDLE_DIR}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
execute_process(COMMAND cp -r ${PADDLE_DIR}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} /usr/lib)
endif ()
set(MKLDNN_PATH "${PADDLE_DIR}/third_party/install/mkldnn")
if(EXISTS ${MKLDNN_PATH})
include_directories("${MKLDNN_PATH}/include")
if (WIN32)
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib)
else ()
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
endif ()
endif()
else()
set(MATH_LIB ${PADDLE_DIR}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
if (WIN32)
if(EXISTS "${PADDLE_DIR}/paddle/fluid/inference/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX}")
set(DEPS
${PADDLE_DIR}/paddle/fluid/inference/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS
${PADDLE_DIR}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
endif()
if(WITH_STATIC_LIB)
set(DEPS
${PADDLE_DIR}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS
${PADDLE_DIR}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
if (NOT WIN32)
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf z xxhash
)
if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/lib")
set(DEPS ${DEPS} snappystream)
endif()
if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/lib")
set(DEPS ${DEPS} snappy)
endif()
else()
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
opencv_world346 glog gflags_static libprotobuf zlibstatic xxhash)
set(DEPS ${DEPS} libcmt shlwapi)
if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/lib")
set(DEPS ${DEPS} snappy)
endif()
if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/lib")
set(DEPS ${DEPS} snappystream)
endif()
endif(NOT WIN32)
if(WITH_GPU)
if(NOT WIN32)
if (USE_TENSORRT)
set(DEPS ${DEPS} ${PADDLE_DIR}/third_party/install/tensorrt/lib/libnvinfer${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${PADDLE_DIR}/third_party/install/tensorrt/lib/libnvinfer_plugin${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${CUDNN_LIB}/libcudnn${CMAKE_SHARED_LIBRARY_SUFFIX})
else()
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
endif()
if (NOT WIN32)
set(DEPS ${DEPS} ${OPENCV_DIR}/lib64/libopencv_imgcodecs${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/lib64/libopencv_imgproc${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/lib64/libopencv_core${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/lib64/libopencv_highgui${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/share/OpenCV/3rdparty/lib64/libIlmImf${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/share/OpenCV/3rdparty/lib64/liblibjasper${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/share/OpenCV/3rdparty/lib64/liblibpng${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/share/OpenCV/3rdparty/lib64/liblibtiff${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/share/OpenCV/3rdparty/lib64/libittnotify${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/share/OpenCV/3rdparty/lib64/liblibjpeg-turbo${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/share/OpenCV/3rdparty/lib64/liblibwebp${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENCV_DIR}/share/OpenCV/3rdparty/lib64/libzlib${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
if (NOT WIN32)
set(EXTERNAL_LIB "-ldl -lrt -lpthread")
set(DEPS ${DEPS} ${EXTERNAL_LIB})
endif()
add_executable(mask_detector main.cc mask_detector.cc)
target_link_libraries(mask_detector ${DEPS})
if (WIN32)
add_custom_command(TARGET mask_detector POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
)
endif()
{
"configurations": [
{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"inheritEnvironments": [ "msvc_x64_x64" ],
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "-v",
"ctestCommandArgs": "",
"variables": [
{
"name": "CUDA_LIB",
"value": "D:/projects/packages/cuda10_0/lib64",
"type": "PATH"
},
{
"name": "CUDNN_LIB",
"value": "D:/projects/packages/cuda10_0/lib64",
"type": "PATH"
},
{
"name": "OPENCV_DIR",
"value": "D:/projects/packages/opencv3_4_6",
"type": "PATH"
},
{
"name": "PADDLE_DIR",
"value": "D:/projects/packages/fluid_inference1_6_1",
"type": "PATH"
},
{
"name": "CMAKE_BUILD_TYPE",
"value": "Release",
"type": "STRING"
}
]
}
]
}
# PaddleHub口罩人脸识别及分类模型C++预测部署
百度通过 `PaddleHub` 开源了业界首个口罩人脸检测及人类模型,该模型可以有效检测在密集人类区域中携带和未携带口罩的所有人脸,同时判断出是否有佩戴口罩。开发者可以通过 `PaddleHub` 快速体验模型效果、搭建在线服务,还可以导出模型集成到`Windows``Linux`等不同平台的`C++`开发项目中。
本文档主要介绍如何把模型在`Windows``Linux`上完成基于`C++`的预测部署。
主要包含两个步骤:
- [1. PaddleHub导出预测模型](#1-paddlehub导出预测模型)
- [2. C++预测部署编译](#2-c预测部署编译)
## 1. PaddleHub导出预测模型
#### 1.1 安装 `PaddlePaddle` 和 `PaddleHub`
- `PaddlePaddle`的安装:
请点击[官方安装文档](https://paddlepaddle.org.cn/install/quick) 选择适合的方式
- `PaddleHub`的安装: `pip install paddlehub`
#### 1.2 从`PaddleHub`导出预测模型
在有网络访问条件下,执行`python export_model.py`导出两个可用于推理部署的口罩模型
其中`pyramidbox_lite_mobile_mask`为移动版模型, 模型更小,计算量低;
`pyramidbox_lite_server_mask`为服务器版模型,在此推荐该版本模型,精度相对移动版本更高。
成功执行代码后导出的模型路径结构:
```
pyramidbox_lite_server_mask
|
├── mask_detector # 口罩人脸分类模型
| ├── __model__ # 模型文件
│ └── __params__ # 参数文件
|
└── pyramidbox_lite # 口罩人脸检测模型
├── __model__ # 模型文件
└── __params__ # 参数文件
```
## 2. C++预测部署编译
本项目支持在Windows和Linux上编译并部署C++项目,不同平台的编译请参考:
- [Linux 编译](./docs/linux_build.md)
- [Windows 使用 Visual Studio 2019编译](./docs/windows_build.md)
# Linux平台口罩人脸检测及分类模型C++预测部署
## 1. 系统和软件依赖
### 1.1 操作系统及硬件要求
- Ubuntu 14.04 或者 16.04 (其它平台未测试)
- GCC版本4.8.5 ~ 4.9.2
- 支持Intel MKL-DNN的CPU
- NOTE: 如需在Nvidia GPU运行,请自行安装CUDA 9.0 / 10.0 + CUDNN 7.3+ (不支持9.1/10.1版本的CUDA)
### 1.2 下载PaddlePaddle C++预测库
PaddlePaddle C++ 预测库主要分为CPU版本和GPU版本。
其中,GPU 版本支持`CUDA 10.0``CUDA 9.0`:
以下为各版本C++预测库的下载链接:
| 版本 | 链接 |
| ---- | ---- |
| CPU+MKL版 | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.6.3-cpu-avx-mkl/fluid_inference.tgz) |
| CUDA9.0+MKL 版 | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.6.3-gpu-cuda9-cudnn7-avx-mkl/fluid_inference.tgz) |
| CUDA10.0+MKL 版 | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.6.3-gpu-cuda10-cudnn7-avx-mkl/fluid_inference.tgz) |
更多可用预测库版本,请点击以下链接下载:[C++预测库下载列表](https://paddlepaddle.org.cn/documentation/docs/zh/advanced_usage/deploy/inference/build_and_install_lib_cn.html)
下载并解压, 解压后的 `fluid_inference`目录包含的内容:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```
**注意:** 请把解压后的目录放到合适的路径,**该目录路径后续会作为编译依赖**使用。
### 1.2 编译安装 OpenCV
```shell
# 1. 下载OpenCV3.4.6版本源代码
wget -c https://paddleseg.bj.bcebos.com/inference/opencv-3.4.6.zip
# 2. 解压
unzip opencv-3.4.6.zip && cd opencv-3.4.6
# 3. 创建build目录并编译, 这里安装到/root/projects/opencv3目录
mkdir build && cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/opencv3 -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=OFF -DWITH_IPP=OFF -DBUILD_IPP_IW=OFF -DWITH_LAPACK=OFF -DWITH_EIGEN=OFF -DCMAKE_INSTALL_LIBDIR=lib64 -DWITH_ZLIB=ON -DBUILD_ZLIB=ON -DWITH_JPEG=ON -DBUILD_JPEG=ON -DWITH_PNG=ON -DBUILD_PNG=ON -DWITH_TIFF=ON -DBUILD_TIFF=ON
make -j4
make install
```
其中参数 `CMAKE_INSTALL_PREFIX` 参数指定了安装路径, 上述操作完成后,`opencv` 被安装在 `$HOME/opencv3` 目录(用户也可选择其他路径),**该目录后续作为编译依赖**
## 2. 编译与运行
### 2.1 配置编译脚本
cd `PaddleHub/deploy/demo/mask_detector/`
打开文件`linux_build.sh`, 看到以下内容:
```shell
# Paddle 预测库路径
PADDLE_DIR=/PATH/TO/fluid_inference/
# OpenCV 库路径
OPENCV_DIR=/PATH/TO/opencv3gcc4.8/
# 是否使用GPU
WITH_GPU=ON
# CUDA库路径, 仅 WITH_GPU=ON 时设置
CUDA_LIB=/PATH/TO/CUDA_LIB64/
# CUDNN库路径,仅 WITH_GPU=ON 且 CUDA_LIB有效时设置
CUDNN_LIB=/PATH/TO/CUDNN_LIB64/
cd build
cmake .. \
-DWITH_GPU=${WITH_GPU} \
-DPADDLE_DIR=${PADDLE_DIR} \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR} \
-DWITH_STATIC_LIB=OFF
make -j4
```
把上述参数根据实际情况做修改后,运行脚本编译程序:
```shell
sh linux_build.sh
```
### 2.2. 运行和可视化
可执行文件有 **2** 个参数,第一个是前面导出的`inference_model`路径,第二个是需要预测的图片路径。
示例:
```shell
./build/main /PATH/TO/pyramidbox_lite_server_mask/ /PATH/TO/TEST_IMAGE
```
执行程序时会打印检测框的位置与口罩是否佩戴的结果,另外result.jpg文件为检测的可视化结果。
**预测结果示例:**
![output_image](https://paddlehub.bj.bcebos.com/deploy/result.jpg)
# Windows平台口罩人脸检测及分类模型C++预测部署
## 1. 系统和软件依赖
### 1.1 基础依赖
- Windows 10 / Windows Server 2016+ (其它平台未测试)
- Visual Studio 2019 (社区版或专业版均可)
- CUDA 9.0 / 10.0 + CUDNN 7.3+ (不支持9.1/10.1版本的CUDA)
### 1.2 下载OpenCV并设置环境变量
- 在OpenCV官网下载适用于Windows平台的3.4.6版本: [点击下载](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download)
- 运行下载的可执行文件,将OpenCV解压至合适目录,这里以解压到`D:\projects\opencv`为例
- 把OpenCV动态库加入到系统环境变量
- 此电脑(我的电脑)->属性->高级系统设置->环境变量
- 在系统变量中找到Path(如没有,自行创建),并双击编辑
- 新建,将opencv路径填入并保存,如D:\projects\opencv\build\x64\vc14\bin
**注意:** `OpenCV`的解压目录后续将做为编译配置项使用,所以请放置合适的目录中。
### 1.3 下载PaddlePaddle C++ 预测库
`PaddlePaddle` **C++ 预测库** 主要分为`CPU``GPU`版本, 其中`GPU版本`提供`CUDA 9.0``CUDA 10.0` 支持。
常用的版本如下:
| 版本 | 链接 |
| ---- | ---- |
| CPU+MKL版 | [fluid_inference_install_dir.zip](https://paddle-wheel.bj.bcebos.com/1.6.3/win-infer/mkl/cpu/fluid_inference_install_dir.zip) |
| CUDA9.0+MKL 版 | [fluid_inference_install_dir.zip](https://paddle-wheel.bj.bcebos.com/1.6.3/win-infer/mkl/post97/fluid_inference_install_dir.zip) |
| CUDA10.0+MKL 版 | [fluid_inference_install_dir.zip](https://paddle-wheel.bj.bcebos.com/1.6.3/win-infer/mkl/post107/fluid_inference_install_dir.zip) |
更多不同平台的可用预测库版本,请[点击查看](https://paddlepaddle.org.cn/documentation/docs/zh/advanced_usage/deploy/inference/windows_cpp_inference.html) 选择适合你的版本。
下载并解压, 解压后的 `fluid_inference`目录包含的内容:
```
fluid_inference_install_dir
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```
**注意:** 这里的`fluid_inference_install_dir` 目录所在路径,将用于后面的编译参数设置,请放置在合适的位置。
## 2. Visual Studio 2019 编译
- 2.1 打开Visual Studio 2019 Community,点击`继续但无需代码`, 如下图:
![step2.1](https://paddleseg.bj.bcebos.com/inference/vs2019_step1.png)
- 2.2 点击 `文件`->`打开`->`CMake`, 如下图:
![step2.2](https://paddleseg.bj.bcebos.com/inference/vs2019_step2.png)
- 2.3 选择本项目根目录`CMakeList.txt`文件打开, 如下图:
![step2.3](https://paddleseg.bj.bcebos.com/deploy/docs/vs2019_step2.3.png)
- 2.4 点击:`项目`->`PaddleMaskDetector的CMake设置`
![step2.4](https://paddleseg.bj.bcebos.com/deploy/docs/vs2019_step2.4.png)
- 2.5 点击浏览设置`OPENCV_DIR`, `CUDA_LIB``PADDLE_DIR` 3个编译依赖库的位置, 设置完成后点击`保存并生成CMake缓存并加载变量`
![step2.5](https://paddleseg.bj.bcebos.com/inference/vs2019_step5.png)
- 2.6 点击`生成`->`全部生成` 编译项目
![step2.6](https://paddleseg.bj.bcebos.com/inference/vs2019_step6.png)
## 3. 运行程序
成功编译后, 产出的可执行文件在项目子目录`out\build\x64-Release`目录, 按以下步骤运行代码:
- 打开`cmd`切换至该目录
- 运行以下命令传入口罩识别模型路径与测试图片
```shell
main.exe ./pyramidbox_lite_server_mask/ ./images/mask_input.png
```
第一个参数即`PaddleHub`导出的预测模型,第二个参数即要预测的图片。
运行后,预测结果保存在文件`result.jpg`中。
**预测结果示例:**
![output_image](https://paddlehub.bj.bcebos.com/deploy/result.jpg)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddlehub as hub
# Load mask detector module from PaddleHub
module = hub.Module(name="pyramidbox_lite_server_mask", version='1.1.0')
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_server_mask")
print("pyramidbox_lite_server_mask module export done!")
# Load mask detector (mobile version) module from PaddleHub
module = hub.Module(name="pyramidbox_lite_mobile_mask", version="1.1.0")
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_mobile_mask")
print("pyramidbox_lite_mobile_mask module export done!")
WITH_GPU=ON
PADDLE_DIR=/ssd3/chenzeyu01/PaddleMaskDetector/fluid_inference
CUDA_LIB=/home/work/cuda-10.1/lib64/
CUDNN_LIB=/home/work/cudnn/cudnn_v7.4/cuda/lib64/
OPENCV_DIR=/ssd3/chenzeyu01/PaddleMaskDetector/opencv3gcc4.8/
rm -rf build
mkdir -p build
cd build
cmake .. \
-DWITH_GPU=${WITH_GPU} \
-DPADDLE_DIR=${PADDLE_DIR} \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR} \
-DWITH_STATIC_LIB=OFF
make clean
make -j12
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <string>
#include "mask_detector.h" // NOLINT
int main(int argc, char* argv[]) {
if (argc < 3 || argc > 4) {
std::cout << "Usage:"
<< "./mask_detector ./models/ ./images/test.png"
<< std::endl;
return -1;
}
bool use_gpu = (argc == 4 ? std::stoi(argv[3]) : false);
auto det_model_dir = std::string(argv[1]) + "/pyramidbox_lite";
auto cls_model_dir = std::string(argv[1]) + "/mask_detector";
auto image_path = argv[2];
// Init Detection Model
float det_shrink = 0.6;
float det_threshold = 0.7;
std::vector<float> det_means = {104, 177, 123};
std::vector<float> det_scale = {0.007843, 0.007843, 0.007843};
FaceDetector detector(
det_model_dir,
det_means,
det_scale,
use_gpu,
det_threshold);
// Init Classification Model
std::vector<float> cls_means = {0.5, 0.5, 0.5};
std::vector<float> cls_scale = {1.0, 1.0, 1.0};
MaskClassifier classifier(
cls_model_dir,
cls_means,
cls_scale,
use_gpu);
// Load image
cv::Mat img = imread(image_path, cv::IMREAD_COLOR);
// Prediction result
std::vector<FaceResult> results;
// Stage1: Face detection
detector.Predict(img, &results, det_shrink);
// Stage2: Mask wearing classification
classifier.Predict(&results);
for (const FaceResult& item : results) {
printf("{left=%d, right=%d, top=%d, bottom=%d},"
" class_id=%d, confidence=%.5f\n",
item.rect[0],
item.rect[1],
item.rect[2],
item.rect[3],
item.class_id,
item.confidence);
}
// Visualization result
cv::Mat vis_img;
VisualizeResult(img, results, &vis_img);
cv::imwrite("result.jpg", vis_img);
return 0;
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
# include "mask_detector.h"
// Normalize the image by (pix - mean) * scale
void NormalizeImage(
const std::vector<float> &mean,
const std::vector<float> &scale,
cv::Mat& im, // NOLINT
float* input_buffer) {
int height = im.rows;
int width = im.cols;
int stride = width * height;
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
int base = h * width + w;
input_buffer[base + 0 * stride] =
(im.at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
input_buffer[base + 1 * stride] =
(im.at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
input_buffer[base + 2 * stride] =
(im.at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
}
}
}
// Load Model and return model predictor
void LoadModel(
const std::string& model_dir,
bool use_gpu,
std::unique_ptr<paddle::PaddlePredictor>* predictor) {
// Config the model info
paddle::AnalysisConfig config;
config.SetModel(model_dir + "/__model__",
model_dir + "/__params__");
if (use_gpu) {
config.EnableUseGpu(100, 0);
} else {
config.DisableGpu();
}
config.SwitchUseFeedFetchOps(false);
config.SwitchSpecifyInputNames(true);
// Memory optimization
config.EnableMemoryOptim();
*predictor = std::move(CreatePaddlePredictor(config));
}
// Visualiztion MaskDetector results
void VisualizeResult(const cv::Mat& img,
const std::vector<FaceResult>& results,
cv::Mat* vis_img) {
for (int i = 0; i < results.size(); ++i) {
int w = results[i].rect[1] - results[i].rect[0];
int h = results[i].rect[3] - results[i].rect[2];
cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[2], w, h);
// Configure color and text size
cv::Scalar roi_color;
std::string text;
if (results[i].class_id == 1) {
text = "MASK: ";
roi_color = cv::Scalar(0, 255, 0);
} else {
text = "NO MASK: ";
roi_color = cv::Scalar(0, 0, 255);
}
text += std::to_string(static_cast<int>(results[i].confidence * 100)) + "%";
int font_face = cv::FONT_HERSHEY_TRIPLEX;
double font_scale = 1.f;
float thickness = 1;
cv::Size text_size = cv::getTextSize(text,
font_face,
font_scale,
thickness,
nullptr);
float new_font_scale = roi.width * font_scale / text_size.width;
text_size = cv::getTextSize(text,
font_face,
new_font_scale,
thickness,
nullptr);
cv::Point origin;
origin.x = roi.x;
origin.y = roi.y;
// Configure text background
cv::Rect text_back = cv::Rect(results[i].rect[0],
results[i].rect[2] - text_size.height,
text_size.width,
text_size.height);
// Draw roi object, text, and background
*vis_img = img;
cv::rectangle(*vis_img, roi, roi_color, 2);
cv::rectangle(*vis_img, text_back, cv::Scalar(225, 225, 225), -1);
cv::putText(*vis_img,
text,
origin,
font_face,
new_font_scale,
cv::Scalar(0, 0, 0),
thickness);
}
}
void FaceDetector::Preprocess(const cv::Mat& image_mat, float shrink) {
// Clone the image : keep the original mat for postprocess
cv::Mat im = image_mat.clone();
cv::resize(im, im, cv::Size(), shrink, shrink, cv::INTER_CUBIC);
im.convertTo(im, CV_32FC3, 1.0);
int rc = im.channels();
int rh = im.rows;
int rw = im.cols;
input_shape_ = {1, rc, rh, rw};
input_data_.resize(1 * rc * rh * rw);
float* buffer = input_data_.data();
NormalizeImage(mean_, scale_, im, input_data_.data());
}
void FaceDetector::Postprocess(
const cv::Mat& raw_mat,
float shrink,
std::vector<FaceResult>* result) {
result->clear();
int rect_num = 0;
int rh = input_shape_[2];
int rw = input_shape_[3];
int total_size = output_data_.size() / 6;
for (int j = 0; j < total_size; ++j) {
// Class id
int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
// Confidence score
float score = output_data_[1 + j * 6];
int xmin = (output_data_[2 + j * 6] * rw) / shrink;
int ymin = (output_data_[3 + j * 6] * rh) / shrink;
int xmax = (output_data_[4 + j * 6] * rw) / shrink;
int ymax = (output_data_[5 + j * 6] * rh) / shrink;
int wd = xmax - xmin;
int hd = ymax - ymin;
if (score > threshold_) {
auto roi = cv::Rect(xmin, ymin, wd, hd) &
cv::Rect(0, 0, rw / shrink, rh / shrink);
// A view ref to original mat
cv::Mat roi_ref(raw_mat, roi);
FaceResult result_item;
result_item.rect = {xmin, xmax, ymin, ymax};
result_item.roi_rect = roi_ref;
result->push_back(result_item);
}
}
}
void FaceDetector::Predict(const cv::Mat& im,
std::vector<FaceResult>* result,
float shrink) {
// Preprocess image
Preprocess(im, shrink);
// Prepare input tensor
auto input_names = predictor_->GetInputNames();
auto in_tensor = predictor_->GetInputTensor(input_names[0]);
in_tensor->Reshape(input_shape_);
in_tensor->copy_from_cpu(input_data_.data());
// Run predictor
predictor_->ZeroCopyRun();
// Get output tensor
auto output_names = predictor_->GetOutputNames();
auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
std::vector<int> output_shape = out_tensor->shape();
// Calculate output length
int output_size = 1;
for (int j = 0; j < output_shape.size(); ++j) {
output_size *= output_shape[j];
}
output_data_.resize(output_size);
out_tensor->copy_to_cpu(output_data_.data());
// Postprocessing result
Postprocess(im, shrink, result);
}
inline void MaskClassifier::Preprocess(std::vector<FaceResult>* faces) {
int batch_size = faces->size();
input_shape_ = {
batch_size,
EVAL_CROP_SIZE_[0],
EVAL_CROP_SIZE_[1],
EVAL_CROP_SIZE_[2]
};
// Reallocate input buffer
int input_size = 1;
for (int x : input_shape_) {
input_size *= x;
}
input_data_.resize(input_size);
auto buffer_base = input_data_.data();
for (int i = 0; i < batch_size; ++i) {
cv::Mat im = (*faces)[i].roi_rect;
// Resize
int rc = im.channels();
int rw = im.cols;
int rh = im.rows;
cv::Size resize_size(input_shape_[3], input_shape_[2]);
if (rw != input_shape_[3] || rh != input_shape_[2]) {
cv::resize(im, im, resize_size, 0.f, 0.f, cv::INTER_CUBIC);
}
im.convertTo(im, CV_32FC3, 1.0 / 256.0);
rc = im.channels();
rw = im.cols;
rh = im.rows;
float* buffer_i = buffer_base + i * rc * rw * rh;
NormalizeImage(mean_, scale_, im, buffer_i);
}
}
void MaskClassifier::Postprocess(std::vector<FaceResult>* faces) {
float* data = output_data_.data();
int batch_size = faces->size();
int out_num = output_data_.size();
for (int i = 0; i < batch_size; ++i) {
auto out_addr = data + (out_num / batch_size) * i;
int best_class_id = 0;
float best_class_score = *(best_class_id + out_addr);
for (int j = 0; j < (out_num / batch_size); ++j) {
auto infer_class = j;
auto score = *(j + out_addr);
if (score > best_class_score) {
best_class_id = infer_class;
best_class_score = score;
}
}
(*faces)[i].class_id = best_class_id;
(*faces)[i].confidence = best_class_score;
}
}
void MaskClassifier::Predict(std::vector<FaceResult>* faces) {
Preprocess(faces);
// Prepare input tensor
auto input_names = predictor_->GetInputNames();
auto in_tensor = predictor_->GetInputTensor(input_names[0]);
in_tensor->Reshape(input_shape_);
in_tensor->copy_from_cpu(input_data_.data());
// Run predictor
predictor_->ZeroCopyRun();
// Get output tensor
auto output_names = predictor_->GetOutputNames();
auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
std::vector<int> output_shape = out_tensor->shape();
// Calculate output length
int output_size = 1;
for (int j = 0; j < output_shape.size(); ++j) {
output_size *= output_shape[j];
}
output_data_.resize(output_size);
out_tensor->copy_to_cpu(output_data_.data());
Postprocess(faces);
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <memory>
#include <utility>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "paddle_inference_api.h" // NOLINT
// MaskDetector Result
struct FaceResult {
// Detection result: face rectangle
std::vector<int> rect;
// Detection result: cv::Mat of face rectange
cv::Mat roi_rect;
// Classification result: confidence
float confidence;
// Classification result : class id
int class_id;
};
// Load Paddle Inference Model
void LoadModel(
const std::string& model_dir,
bool use_gpu,
std::unique_ptr<paddle::PaddlePredictor>* predictor);
// Visualiztion MaskDetector results
void VisualizeResult(const cv::Mat& img,
const std::vector<FaceResult>& results,
cv::Mat* vis_img);
class FaceDetector {
public:
explicit FaceDetector(const std::string& model_dir,
const std::vector<float>& mean,
const std::vector<float>& scale,
bool use_gpu = false,
float threshold = 0.7) :
mean_(mean),
scale_(scale),
threshold_(threshold) {
LoadModel(model_dir, use_gpu, &predictor_);
}
// Run predictor
void Predict(
const cv::Mat& img,
std::vector<FaceResult>* result,
float shrink);
private:
// Preprocess image and copy data to input buffer
void Preprocess(const cv::Mat& image_mat, float shrink);
// Postprocess result
void Postprocess(
const cv::Mat& raw_mat,
float shrink,
std::vector<FaceResult>* result);
std::unique_ptr<paddle::PaddlePredictor> predictor_;
std::vector<float> input_data_;
std::vector<float> output_data_;
std::vector<int> input_shape_;
std::vector<float> mean_;
std::vector<float> scale_;
float threshold_;
};
class MaskClassifier {
public:
explicit MaskClassifier(const std::string& model_dir,
const std::vector<float>& mean,
const std::vector<float>& scale,
bool use_gpu = false) :
mean_(mean),
scale_(scale) {
LoadModel(model_dir, use_gpu, &predictor_);
}
void Predict(std::vector<FaceResult>* faces);
private:
void Preprocess(std::vector<FaceResult>* faces);
void Postprocess(std::vector<FaceResult>* faces);
std::unique_ptr<paddle::PaddlePredictor> predictor_;
std::vector<float> input_data_;
std::vector<int> input_shape_;
std::vector<float> output_data_;
const std::vector<int> EVAL_CROP_SIZE_ = {3, 128, 128};
std::vector<float> mean_;
std::vector<float> scale_;
};
# -*- coding:utf-8 -*-
import paddlehub as hub
import cv2
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import json
import os
module = hub.Module(name="pyramidbox_lite_server_mask", version='1.1.0')
# opencv输出中文
def paint_chinese(im, chinese, position, fontsize, color_bgr):
# 图像从OpenCV格式转换成PIL格式
img_PIL = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))
font = ImageFont.truetype(
'SourceHanSansSC-Medium.otf', fontsize, encoding="utf-8")
#color = (255,0,0) # 字体颜色
#position = (100,100)# 文字输出位置
color = color_bgr[::-1]
draw = ImageDraw.Draw(img_PIL)
# PIL图片上打印汉字 # 参数1:打印坐标,参数2:文本,参数3:字体颜色,参数4:字体
draw.text(position, chinese, font=font, fill=color)
img = cv2.cvtColor(np.asarray(img_PIL), cv2.COLOR_RGB2BGR) # PIL图片转cv2 图片
return img
result_path = './result'
if not os.path.exists(result_path):
os.mkdir(result_path)
name = "./result/1-mask_detection.mp4"
width = 1280
height = 720
fps = 30
fourcc = cv2.VideoWriter_fourcc(*'vp90')
writer = cv2.VideoWriter(name, fourcc, fps, (width, height))
maskIndex = 0
index = 0
data = []
capture = cv2.VideoCapture(0) # 打开摄像头
#capture = cv2.VideoCapture('./test_video.mp4') # 打开视频文件
while True:
frameData = {}
ret, frame = capture.read() # frame即视频的一帧数据
if ret == False:
break
frame_copy = frame.copy()
input_dict = {"data": [frame]}
results = module.face_detection(data=input_dict)
maskFrameDatas = []
for result in results:
label = result['data']['label']
confidence_origin = result['data']['confidence']
confidence = round(confidence_origin, 2)
confidence_desc = str(confidence)
top, right, bottom, left = int(result['data']['top']), int(
result['data']['right']), int(result['data']['bottom']), int(
result['data']['left'])
#将当前帧保存为图片
img_name = "avatar_%d.png" % (maskIndex)
path = "./result/" + img_name
image = frame[top - 10:bottom + 10, left - 10:right + 10]
cv2.imwrite(path, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
maskFrameData = {}
maskFrameData['top'] = top
maskFrameData['right'] = right
maskFrameData['bottom'] = bottom
maskFrameData['left'] = left
maskFrameData['confidence'] = float(confidence_origin)
maskFrameData['label'] = label
maskFrameData['img'] = img_name
maskFrameDatas.append(maskFrameData)
maskIndex += 1
color = (0, 255, 0)
label_cn = "有口罩"
if label == 'NO MASK':
color = (0, 0, 255)
label_cn = "无口罩"
cv2.rectangle(frame_copy, (left, top), (right, bottom), color, 3)
cv2.putText(frame_copy, label, (left, top-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
#origin_point = (left, top - 36)
#frame_copy = paint_chinese(frame_copy, label_cn, origin_point, 24,
# color)
writer.write(frame_copy)
cv2.imshow('Mask Detection', frame_copy)
frameData['frame'] = index
# frameData['seconds'] = int(index/fps)
frameData['data'] = maskFrameDatas
data.append(frameData)
print(json.dumps(frameData))
index += 1
if cv2.waitKey(1) & 0xFF == ord('q'):
break
with open("./result/2-mask_detection.json", "w") as f:
json.dump(data, f)
writer.release()
cv2.destroyAllWindows()
# 口罩佩戴检测模型Python高性能部署方案
百度通过 PaddleHub 开源了业界首个口罩人脸检测及人类模型,该模型可以有效检测在密集人类区域中携带和未携带口罩的所有人脸,同时判断出是否有佩戴口罩。开发者可以通过 PaddleHub 快速体验模型效果、搭建在线服务。
本文档主要介绍如何完成基于`python`的口罩佩戴检测预测。
主要包含两个步骤:
- [1. PaddleHub导出预测模型](#1-paddlehub导出预测模型)
- [2. 基于python的预测](#2-预测部署编译)
## 1. PaddleHub导出预测模型
#### 1.1 安装 `PaddlePaddle` 和 `PaddleHub`
- `PaddlePaddle`的安装:
请点击[官方安装文档](https://paddlepaddle.org.cn/install/quick) 选择适合的方式
- `PaddleHub`的安装: `pip install paddlehub`
- `opencv`的安装: `pip install opencv-python`
#### 1.2 从`PaddleHub`导出预测模型
```
git clone https://github.com/PaddlePaddle/PaddleHub.git
cd PaddleHub/demo/mask_detection/python/
python export_model.py
```
在有网络访问条件下,执行`python export_model.py`导出两个可用于推理部署的口罩模型
其中`pyramidbox_lite_mobile_mask`为移动版模型, 模型更小,计算量低;
`pyramidbox_lite_server_mask`为服务器版模型,在此推荐该版本模型,精度相对移动版本更高。
成功执行代码后导出的模型路径结构:
```
pyramidbox_lite_server_mask
|
├── mask_detector # 口罩人脸分类模型
| ├── __model__ # 模型文件
│ └── __params__ # 参数文件
|
└── pyramidbox_lite # 口罩人脸检测模型
├── __model__ # 模型文件
└── __params__ # 参数文件
```
## 2. 基于python的预测
### 2.1 执行预测程序
在终端输入以下命令进行预测:
```bash
python infer.py --models_dir=/path/to/models --img_paths=/path/to/images --video_path=/path/to/video --video_size=size/of/video --use_camera=(False/True)
--use_gpu=(False/True)
```
参数说明如下:
| 参数 | 是否必须|含义 |
|-------|-------|----------|
| models_dir | Yes|上述导出的模型路径 |
| img_paths |img_paths/video_path 二选一|需要预测的图片目录 |
| video_path |img_paths/video_path 二选一|需要预测的视频目录|
| use_camera |No|是否打开摄像头进行预测,默认为False |
| open_imshow |No|是否对视频的检测结果实时绘图,默认为False |
| use_gpu |No|是否GPU,默认为False|
说明:
如果use_gpu=True,请先在命令行指定GPU,如:
```
export CUDA_VISIBLE_DEVICES=0
```
## 3. 可视化结果
执行完预测后,预测的可视化结果会保存在当前路径下的`./result/`下面。
输入样例:
![avatar](./images/mask.jpg)
输出结果:
![avatar](./images/mask.jpg.result.jpg)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddlehub as hub
# Load mask detector module from PaddleHub
module = hub.Module(name="pyramidbox_lite_server_mask", version='1.1.0')
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_server_mask")
print("pyramidbox_lite_server_mask module export done!")
# Load mask detector (mobile version) module from PaddleHub
module = hub.Module(name="pyramidbox_lite_mobile_mask", version="1.1.0")
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_mobile_mask")
print("pyramidbox_lite_mobile_mask module export done!")
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import ast
import time
import json
import argparse
import numpy as np
import cv2
import paddle.fluid as fluid
from PIL import Image
from PIL import ImageDraw
import argparse
def parse_args():
parser = argparse.ArgumentParser('mask detection.')
parser.add_argument('--models_dir',
type=str,
default='',
help='path of models.')
parser.add_argument('--img_paths',
type=str,
default='',
help='path of images')
parser.add_argument('--video_path',
type=str,
default='',
help='path of video.')
parser.add_argument('--use_camera',
type=bool,
default=False,
help='switch detect video or camera, default:video.')
parser.add_argument('--open_imshow',
type=bool,
default=False,
help='visualize video detection results in real time.')
parser.add_argument('--use_gpu',
type=bool,
default=False,
help='switch cpu/gpu, default:cpu.')
args = parser.parse_args()
return args
class FaceResult:
def __init__(self, rect_data, rect_info):
self.rect_info = rect_info
self.rect_data = rect_data
self.class_id = -1
self.score = 0.0
def VisualizeResult(im, faces):
LABELS = ['NO_MASK', 'MASK']
COLORS = [(0, 0, 255), (0, 255, 0)]
for face in faces:
label = LABELS[face.class_id]
color = COLORS[face.class_id]
left, right, top, bottom = [int(item) for item in face.rect_info]
label_position = (left, top)
cv2.putText(im, label, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1,
color, 2, cv2.LINE_AA)
cv2.rectangle(im, (left, top), (right, bottom), color, 3)
return im
def LoadModel(model_dir, use_gpu=False):
config = fluid.core.AnalysisConfig(model_dir + '/__model__',
model_dir + '/__params__')
if use_gpu:
config.enable_use_gpu(100, 0)
config.switch_ir_optim(True)
else:
config.disable_gpu()
config.disable_glog_info()
config.switch_specify_input_names(True)
config.enable_memory_optim()
return fluid.core.create_paddle_predictor(config)
class MaskClassifier:
def __init__(self, model_dir, mean, scale, use_gpu=False):
self.mean = np.array(mean).reshape((3, 1, 1))
self.scale = np.array(scale).reshape((3, 1, 1))
self.predictor = LoadModel(model_dir, use_gpu)
self.EVAL_SIZE = (128, 128)
def Preprocess(self, faces):
h, w = self.EVAL_SIZE[1], self.EVAL_SIZE[0]
inputs = []
for face in faces:
im = cv2.resize(face.rect_data, (128, 128),
fx=0,
fy=0,
interpolation=cv2.INTER_CUBIC)
# HWC -> CHW
im = im.swapaxes(1, 2)
im = im.swapaxes(0, 1)
# Convert to float
im = im[:, :, :].astype('float32') / 256.0
# im = (im - mean) * scale
im = im - self.mean
im = im * self.scale
im = im[np.newaxis, :, :, :]
inputs.append(im)
return inputs
def Postprocess(self, output_data, faces):
argmx = np.argmax(output_data, axis=1)
for idx in range(len(faces)):
faces[idx].class_id = argmx[idx]
faces[idx].score = output_data[idx][argmx[idx]]
return faces
def Predict(self, faces):
inputs = self.Preprocess(faces)
if len(inputs) != 0:
input_data = np.concatenate(inputs)
im_tensor = fluid.core.PaddleTensor(
input_data.copy().astype('float32'))
output_data = self.predictor.run([im_tensor])[0]
output_data = output_data.as_ndarray()
self.Postprocess(output_data, faces)
class FaceDetector:
def __init__(self, model_dir, mean, scale, use_gpu=False, threshold=0.7):
self.mean = np.array(mean).reshape((3, 1, 1))
self.scale = np.array(scale).reshape((3, 1, 1))
self.threshold = threshold
self.predictor = LoadModel(model_dir, use_gpu)
def Preprocess(self, image, shrink):
h, w = int(image.shape[1] * shrink), int(image.shape[0] * shrink)
im = cv2.resize(image, (h, w),
fx=0,
fy=0,
interpolation=cv2.INTER_CUBIC)
# HWC -> CHW
im = im.swapaxes(1, 2)
im = im.swapaxes(0, 1)
# Convert to float
im = im[:, :, :].astype('float32')
# im = (im - mean) * scale
im = im - self.mean
im = im * self.scale
im = im[np.newaxis, :, :, :]
return im
def Postprocess(self, output_data, ori_im, shrink):
det_out = []
h, w = ori_im.shape[0], ori_im.shape[1]
for out in output_data:
class_id = int(out[0])
score = out[1]
xmin = (out[2] * w)
ymin = (out[3] * h)
xmax = (out[4] * w)
ymax = (out[5] * h)
wd = xmax - xmin
hd = ymax - ymin
valid = (xmax >= xmin and xmin > 0 and ymax >= ymin and ymin > 0)
if score > self.threshold and valid:
roi_rect = ori_im[int(ymin):int(ymax), int(xmin):int(xmax)]
det_out.append(FaceResult(roi_rect, [xmin, xmax, ymin, ymax]))
return det_out
def Predict(self, image, shrink):
ori_im = image.copy()
im = self.Preprocess(image, shrink)
im_tensor = fluid.core.PaddleTensor(im.copy().astype('float32'))
output_data = self.predictor.run([im_tensor])[0]
output_data = output_data.as_ndarray()
return self.Postprocess(output_data, ori_im, shrink)
def predict_images(args):
detector = FaceDetector(model_dir=args.models_dir + '/pyramidbox_lite/',
mean=[104.0, 177.0, 123.0],
scale=[0.007843, 0.007843, 0.007843],
use_gpu=args.use_gpu,
threshold=0.7)
classifier = MaskClassifier(model_dir=args.models_dir + '/mask_detector/',
mean=[0.5, 0.5, 0.5],
scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
names = []
image_paths = []
for name in os.listdir(args.img_paths):
if name.split('.')[-1] in ['jpg', 'png', 'jpeg']:
names.append(name)
image_paths.append(os.path.join(args.img_paths, name))
images = [cv2.imread(path, cv2.IMREAD_COLOR) for path in image_paths]
path = './result'
isExists = os.path.exists(path)
if not isExists:
os.makedirs(path)
for idx in range(len(images)):
im = images[idx]
det_out = detector.Predict(im, shrink=0.7)
classifier.Predict(det_out)
img = VisualizeResult(im, det_out)
cv2.imwrite(os.path.join(path, names[idx] + '.result.jpg'), img)
def predict_video(args, im_shape=(1920, 1080), use_camera=False):
if args.use_camera:
capture = cv2.VideoCapture(0)
else:
capture = cv2.VideoCapture(args.video_path)
detector = FaceDetector(model_dir=args.models_dir + '/pyramidbox_lite/',
mean=[104.0, 177.0, 123.0],
scale=[0.007843, 0.007843, 0.007843],
use_gpu=args.use_gpu,
threshold=0.7)
classifier = MaskClassifier(model_dir=args.models_dir + '/mask_detector/',
mean=[0.5, 0.5, 0.5],
scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
path = './result'
isExists = os.path.exists(path)
if not isExists:
os.makedirs(path)
fps = 30
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(os.path.join(path, 'result.mp4'), fourcc, fps,
(width, height))
import time
start_time = time.time()
index = 0
while (1):
ret, frame = capture.read()
if not ret:
break
print('detect frame:%d' % (index))
index += 1
det_out = detector.Predict(frame, shrink=0.5)
classifier.Predict(det_out)
end_pre = time.time()
im = VisualizeResult(frame, det_out)
writer.write(im)
if args.open_imshow:
cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
end_time = time.time()
print("Average prediction time per frame:", (end_time - start_time) / index)
writer.release()
if __name__ == "__main__":
args = parse_args()
print(args.models_dir)
if args.img_paths != '':
predict_images(args)
elif args.video_path != '' or args.use_camera:
predict_video(args)
/*reset*/
*{ margin: 0; padding: 0; box-sizing: border-box; }
body{ font-family: Helvetica Neue,Helvetica,PingFang SC,Hiragino Sans GB,Microsoft YaHei,Noto Sans CJK SC,WenQuanYi Micro Hei,Arial,sans-serif; font-size: 14px; line-height: 1.4; color: #fff; -webkit-font-smoothing: antialiased; background: #2f3242;}
ul,ol{ list-style-type: none; }
a{ text-decoration: none; transition: all .2s ease; -webkit-transition: all .2s ease;}
img{border: none; }
table{ border-collapse:collapse; border-spacing:0; }
p{ line-height: 1.4 }
a {color: #333;}
a:hover {color: #666;}
input{ outline: none; }
button {background: none;border:none}
.clear:after{ content: " "; clear: both; display: block; }
h1,h2,h3,h4,h5,h6{font-style: normal;margin:0;padding:0;font-weight: normal;}
.clear:after{ content: " "; clear: both; display: block; }
.header {height:95px;padding-left:95px;padding-right:25px;}
.header .logo{padding-left:0px;padding-top:25px;}
.header .right-bar {float: right;padding-top:20px;}
.header .search {width: 313px;
height: 48px;
border: 2px solid #fff; /* stroke */
-moz-border-radius: 26px;
-webkit-border-radius: 26px;
border-radius: 26px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background: url(../image/search.png) 10px center no-repeat;
padding-left:50px;
color: #fff;
font-size: 16px;
}
.header .icon {display: inline-block;margin-left:40px;width:31px;height: 31px;vertical-align: middle;position: relative;}
.icon1 {background: url(../image/icon1.png) no-repeat center center;}
.icon2 {background: url(../image/icon2.png) no-repeat center center;}
.header .avatar {width:56px;height: 56px;border-radius: 100%;overflow: hidden;display: inline-block;margin-left:40px;vertical-align: middle;}
.header .right-bar .news-dot {
width: 15px;
height: 15px;
border: 3px solid #2f3141; /* stroke */
-moz-border-radius: 9px;
-webkit-border-radius: 9px;
border-radius: 9px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #2195f3; /* layer fill content */
position: absolute;
right:0px;
top:0px;
}
.header .arrow {display: inline-block;background: url(../image/arrow.png) no-repeat 0 0;width:12px;height: 8px;margin-left:10px;}
.bd {padding-left:95px;position: relative;background: #2f3242;}
.bd .side {width:95px;position: absolute;left:0;top:0;}
.bd .con {background: #2b2d3c;}
.bd .con .hd {background: #6d7499;color: #fff;font-size: 18px;padding:0 25px 0 60px;line-height: 60px;height: 60px;}
.bd.chart {padding:0;}
.bd .con .hd .right-bar {float:right;}
.select-wrap {min-width: 150px;margin-top:10px;line-height: 38px;
height: 38px;
border-radius: 19px;
position: relative;
border:1px solid #9da3bd;
display: inline-block;
color: #fff;
margin-left:20px;
}
.select-wrap select {border: none;
outline: none;
width: 100%;
height: 40px;
line-height: 40px;
background: transparent;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
font-size: 16px;
color: #fff;
padding-left: 20px;}
.select-wrap:after{
content: "";
width: 14px;
height: 8px;
background: url(../image/arrow.png) no-repeat center;
position: absolute;
right: 20px;
top: 45%;
pointer-events: none;
}
.con-bd {position: relative;min-height: 960px;}
.maper {padding-left:380px;}
.con-left {left:0;top:0;position: absolute;width:380px;min-height: 960px;}
.con-left .map {padding:20px;}
.con-left .ctr-pan {position:absolute;bottom:20px;left:0;width:380px;color: #fff;}
.con-left .ctr-pan ul{padding-left:20px;}
.con-left .ctr-pan li {padding:5px 0;}
.con-left .ctr-pan .icon {width:23px;height: 23px;display: inline-block;vertical-align: middle;margin-right:10px;}
.con-left .ctr-pan .icon3 {background: url(../image/icon3.png) no-repeat center center;}
.icon4 {background: url(../image/icon4.png) no-repeat center center;}
.con-left .ctr-pan .icon5 {background: url(../image/icon5.png) no-repeat center center;}
.con-left .ctr-pan .switch {border:2px solid #aaaaaa;border-radius:8px;height:15px;width:30px;display: inline-block;line-height: 15px;position: relative;vertical-align: middle;margin-left:10px;}
.con-left .ctr-pan .switch em {width: 7px;
height: 7px;
-moz-border-radius: 4px / 3px;
-webkit-border-radius: 4px / 3px;
border-radius: 4px / 3px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #aaa; /* layer fill content */
display: inline-block;
vertical-align: middle;
position: absolute;
top:2px;
}
.con-left .ctr-pan .switch.on em{left:16px;}
.con-left .ctr-pan .switch.off em{left:2px;}
.map-wrap {padding:20px 0 0 0;}
.map-wrap img {}
.zoom-bar {
width: 49px;
height: 231px;
border: 3px solid #757da3; /* stroke */
-moz-border-radius: 27px;
-webkit-border-radius: 27px;
border-radius: 27px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #2f3141; /* layer fill content */
position: absolute;
right:50px;
top:30%;
text-align: center;
}
.zoom-bar .icon {width:30px;height: 30px;display: inline-block;}
.zoom-bar .zoom {background: url(../image/zoom.png) no-repeat center center;margin-top:5px;}
.zoom-bar .narrow {background: url(../image/narrow.png) no-repeat center center;margin-top:55px;}
.zoom-bar .mouse {background: url(../image/mu.png) no-repeat center center;margin-top:58px;}
.side .nav {padding-top:118px;}
.side .nav a{display: block;width:95px;height: 95px;margin:100px 0 0 0;position: relative;}
.side .nav a:hover {background-color: #2c2e3d;}
.side .nav .nav1 {background-image: url(../image/nav1.png);background-repeat: no-repeat;background-position: center center;}
.side .nav .nav2 {background-image: url(../image/nav2.png);background-repeat: no-repeat;background-position: center center;}
.side .nav .nav3 {background-image: url(../image/nav3.png);background-repeat: no-repeat;background-position: center center;}
.side .news-dot {
width: 15px;
height: 15px;
border: 3px solid #2f3141; /* stroke */
-moz-border-radius: 9px;
-webkit-border-radius: 9px;
border-radius: 9px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #2195f3; /* layer fill content */
position: absolute;
left:55px;
top:30px;
}
.side .nav a.current {background-color: #2c2e3d;}
.person-list {font-size: 16px;padding-left:60px;}
.person-list table {width:100%;}
.person-list thead td{color: #9ea3b4;height:70px;line-height: 70px;text-align: center;background: none;}
.person-list td {color: #fff;text-align: center;padding:10px 0;}
.person-list .pro .item {display: inline-block;}
.person-list .pro .item span {display:block;width:33px;height: 33px;margin:0 10px;margin-bottom:5px;}
.t1 {background: url(../image/t1.png) no-repeat center center;}
.t2 {background: url(../image/t2.png) no-repeat center center;}
.t3 {background: url(../image/t3.png) no-repeat center center;}
.t4 {background: url(../image/t4.png) no-repeat center center;}
.t5 {background: url(../image/t5.png) no-repeat center center;}
.t6 {background: url(../image/t6.png) no-repeat center center;}
.t7 {background: url(../image/t7.png) no-repeat center center;}
.person-list .dot {background: url(../image/dot.png) no-repeat 0 0;width:4px;height: 16px;display: inline-block;}
.person-list .time {font-size: 14px;color: #9ea3b4;}
.person-list tr:nth-child(odd) td {background: #3a3e52;}
.person-list thead tr:nth-child(odd) td {background: none;}
.person-list tr:nth-child(even) td {height:20px;}
.person-list tr td:last-child {padding:10px 10px;}
.line-female {border-left:4px solid #ed70bc;}
.line-male {border-left:4px solid #2196f3;}
.line-child {border-left:4px solid #e2e3e8;}
.mask {background: rgba(0,0,0,.90);position: absolute;width: 100%;height: 100%;left: 0;top:0;z-index: 99;}
.mask .cp {background: url(../image/cp.png) no-repeat 0 0 ;width:154px;height: 59px;margin:10% auto 0 auto;}
.drop-area {
width: 247px;
height: 247px;
border:4px dotted #fff;
border-radius: 30px;
background: url(../image/icon6.png) no-repeat center 50px;
margin:10% auto 50px auto;
}
.drop-area .text {font-size: 20px;text-align: center;color: #fff;margin-top:170px;}
.match-box {text-align: center;width:470px;margin: auto;color: #fff;font-size: 20px;}
.match-box .match-bar {width: 316px;
height: 8px;
-moz-border-radius: 4px;
-webkit-border-radius: 4px;
border-radius: 4px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #252734; /* layer fill content */
-moz-box-shadow: 0 0 48px rgba(0,0,0,.14); /* outer glow */
-webkit-box-shadow: 0 0 48px rgba(0,0,0,.14); /* outer glow */
box-shadow: 0 0 48px rgba(0,0,0,.14); /* outer glow */
position: relative;
display: inline-block;
margin:0 10px;
vertical-align: middle;
}
.match-box .match-bar span {
height: 8px;
-moz-border-radius: 4px;
-webkit-border-radius: 4px;
border-radius: 4px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #71799f; /* layer fill content */
position: absolute;
left: 0;
top:0;
}
.match-box .match-bar span em {
width: 25px;
height: 25px;
-moz-border-radius: 12px / 13px;
-webkit-border-radius: 12px / 13px;
border-radius: 12px / 13px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #fff; /* layer fill content */
-moz-box-shadow: 0 5px 5px rgba(0,0,0,.13); /* drop shadow */
-webkit-box-shadow: 0 5px 5px rgba(0,0,0,.13); /* drop shadow */
box-shadow: 0 5px 5px rgba(0,0,0,.13); /* drop shadow */
position: absolute;
right:0;
top:-8px;
}
.match-res-box {text-align: center;margin:60px auto 80px auto;width:320px;counter-reset: #fff;font-size: 17px;}
.match-avatar {
width: 98px;
height: 98px;
-moz-border-radius: 49px;
-webkit-border-radius: 49px;
border-radius: 49px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #6b7397; /* layer fill content */
overflow: hidden;
background: #6c7398;
margin: auto;
}
.match-res-box .text {text-align: center;margin-top:15px;}
.match-res-box .text span {font-weight: bold;}
.avatar-s {width: 56px;
height: 56px;
-moz-border-radius: 28px;
-webkit-border-radius: 28px;
border-radius: 28px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #ed6fbb; /* layer fill content */
display: inline-block;
overflow: hidden;
vertical-align: middle;
margin-right:20px;
}
.camera-list {padding:75px 0 0 90px;}
.camera-list li {float: left;width:400px;padding:0 40px 40px 40px;text-align: center;}
.camera-list .video-box {
width: 315px;
height: 236px;
-moz-border-radius: 24px;
-webkit-border-radius: 24px;
border-radius: 24px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #37394b; /* layer fill content */
overflow: hidden;
}
.camera-list li p {height: 44px;line-height: 44px;font-size: 18px;}
.camera-list li .icon {width:23px;height: 23px;display: inline-block;vertical-align: middle;margin-right:10px;}
.camera-con {padding-right:350px;position: relative;margin-top:40px;padding-left:40px;}
.camera-con .list {width:240px;position: absolute;right:50px;top:0;text-align: center;}
.camera-con .list li {margin-bottom:30px;}
.camera-con .list li .ca {width:240px;height: 178px;overflow: hidden;border-radius: 20px;}
.video-box {width:100%;}
.camera-con .list li p {padding:10px 0 0 0;}
.camera-con .list li .icon {width: 23px;
height: 23px;
display: inline-block;
vertical-align: middle;
margin-right: 10px;}
.tab li {float: left;}
.tab a {font-size: 18px;display: block;width: 180px;height: 58px;list-style: 58px;text-align: center;color: #fff;}
.tab a:hover,
.tab a.current {background: #8088ad;}
.chart .con .hd {padding-left:130px;}
.chart-bd {padding:20px;}
.chart-panel {padding-bottom:20px;}
.left-panel {width:790px;height:380px;float: left;background: #2f3242;padding:10px 20px;}
.right-panel {width:1040px;height: 380px;float: left;margin-left:20px;}
.panel-hd .right-bar {float:right;color: #9ea3b4;font-size: 16px;}
.panel-hd {font-size: 25px;color:#fff;height:70px;}
.panel-hd .select-wrap select{color: #9ea3b4;font-size: 16px;}
.right-panel .panel-hd {background: #3a3e52;height:96px;line-height: 96px;font-size: 25px;color: #fff;text-align: center;}
.right-panel .list {height:65px;padding:30px 0;}
.right-panel .list li {padding:30px 100px 30px 85px;position: relative;border-bottom:1px solid #505464;}
.right-panel .list li .avatar {
width: 42px;
height: 42px;
-moz-border-radius: 21px;
-webkit-border-radius: 21px;
border-radius: 21px; /* border radius */
-moz-background-clip: padding;
-webkit-background-clip: padding-box;
background-clip: padding-box; /* prevents bg color from leaking outside the border */
background-color: #9ba1b1; /* layer fill content */
display: block;
position: absolute;
left:25px;
}
.right-panel .list li .time {font-size: 16px;color: #fff;}
.right-panel .list li .text {color: #9ea3b4;}
.right-panel .list li .dot {position: absolute;right:25px;background: url(../image/dot.png) no-repeat center center;width:4px;height: 16px;top:40px;}
<?php
$json_string = file_get_contents(".\\video\\result\\2-mask_detection.json");
// 用参数true把JSON字符串强制转成PHP数组
$data_o = json_decode($json_string, true);
?>
<script language="javascript">
var pic_data = new Array();
<?php
for($i=0;$i<count($data_o);$i++){
$frame=$data_o[$i]["frame"];
$data_1=$data_o[$i]["data"];
for($j=0;$j<count($data_1);$j++){
?>
pic_data[<?php echo $frame;?>] = <?php echo json_encode($data_1);?>;
// pic_data[<?php echo $frame;?>] = 1;
<?php
}
}
?>
</script>
<?php
//摄像机位置,及视野宽高
$cams = array();
//雷达区图片
$area_w=250;
$area_h=500;
//cam图片大小
$cam_w=21;
$cam_h=23;
//vide宽高
$vide_w=1280;
$vide_h=720;
$cams[0]["cam_x"]=645;
$cams[0]["cam_y"]=243;
$cams[0]["cam_area_rotate"]=270;
$cams[0]["cam_area_w"]=0.4; //比例
$cams[0]["cam_area_h"]=0.8;
$cams[1]["cam_x"]=888;
$cams[1]["cam_y"]=167;
$cams[1]["cam_area_rotate"]=180;
$cams[1]["cam_area_w"]=0.6; //比例
$cams[1]["cam_area_h"]=1;
$cams[2]["cam_x"]=1051;
$cams[2]["cam_y"]=163;
$cams[2]["cam_area_rotate"]=270;
$cams[2]["cam_area_w"]=0.3; //比例
$cams[2]["cam_area_h"]=1;
$cams[3]["cam_x"]=893;
$cams[3]["cam_y"]=257;
$cams[3]["cam_area_rotate"]=275;
$cams[3]["cam_area_w"]=1; //比例
$cams[3]["cam_area_h"]=1;
$cams[4]["cam_x"]=714;
$cams[4]["cam_y"]=304;
$cams[4]["cam_area_rotate"]=90;
$cams[4]["cam_area_w"]=0.2; //比例
$cams[4]["cam_area_h"]=0.5;
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=Edge,chrome=1" />
<meta name="viewport" content="width=device-width" />
<meta name="format-detection" content="telephone=no, address=no, email=no" />
<link rel="stylesheet" type="text/css" href="css/css.css">
<script type="text/javascript" src="js/jquery.js"></script>
<script type="text/javascript" src="js/echarts.js"></script>
<style type="text/css">
body {
margin: 0;
padding: 0px;
font-family: "Microsoft YaHei", YaHei, "微软雅黑", SimHei, "黑体";
font-size: 14px;
}
.box {
}
.cam {
position: absolute;
border: none;
}
.area {
cursor: pointer;
z-index: 999;
}
</style>
</head>
<body>
<div class="header">
<div class="right-bar">
<input type="text" class="search">
<span class="icon icon1"></span> <span class="icon icon2"></span>
<div class="avatar"><img src="image/ava.png" alt=""></div>
<span class="arrow"></span> </div>
<div class="logo"><img src="image/logo.png" alt="" style="font-size:120px;"></div>
</div>
<div class="bd">
<div class="side">
<div class="nav">
<ul>
<li><a href="#" class="nav1 current"></a></li>
<li><a href="#" class="nav2"></a></li>
<li><a href="#" class="nav3"></a></li>
</ul>
</div>
</div>
<div class="con">
<div class="hd clear">
<div class="right-bar">摄像头分组显示 <span class="select-wrap">
<select name="">
<option value="A区摄像头">A区摄像头</option>
<option value="A区摄像头">A区摄像头</option>
</select>
</span> </div>
<span class="tit">摄像头_1</span> </div>
<div class="con-bd">
<div class="map-wrap">
<div class="zoom-bar"> <span class="icon zoom "></span> <span class="icon mouse"></span> <span class="icon narrow"></span> </div>
<div class="box">
<table width="1870" border="0" cellspacing="10">
<tr>
<td width="44%" valign="top"><p></p>
<!-- (拖拽在回来可能会有问题 TODO) -->
<div id="video" style="width: 1000px; height:560px;"></div>
<script type="text/javascript" src="js/ckplayer/ckplayer.js" charset="UTF-8"></script>
<script type="text/javascript">
var videoObject = {
container: '#video', //容器的ID或className
variable: 'player', //播放函数名称
loop: true, //播放结束是否循环播放
loaded: "loadedHandler",
autoplay: true,//是否自动播放
drag: 'start', //拖动的属性
video: [
['video/result/222.mp4', 'video/mp4', '中文标清', 0],
]
};
var player = new ckplayer(videoObject);
function timeHandler(time) {
$(".no_pmask").html("");
$(".pmask").html("");
var rtime = parseInt(time*1000);
frame=parseInt(time*30); //每秒30帧 第多少帧
for (i = 0; i < pic_data[frame].length; i++) {
if(pic_data[frame][i].label=="NO MASK"){
$(".no_pmask").append("<img src='video/result/"+pic_data[frame][i].img+"' height=100>");
} else {
$(".pmask").append("<img src='video/result/"+pic_data[frame][i].img+"' height=100>");
}
}
}
function seekTimeHandler(time) {
var rtime = parseInt(time*1000);
$(".seekstate").html(rtime);
}
function loadedHandler() {
player.addListener('time', timeHandler); //监听播放时间
player.addListener('seekTime', seekTimeHandler); //监听跳转播放完
/*
player.addListener('error', errorHandler); //监听视频加载出错
player.addListener('loadedmetadata', loadedMetaDataHandler); //监听元数据
player.addListener('duration', durationHandler); //监听播放时间
player.addListener('play', playHandler); //监听暂停播放
player.addListener('pause', pauseHandler); //监听暂停播放
player.addListener('buffer', bufferHandler); //监听缓冲状态
player.addListener('seek', seekHandler); //监听跳转播放完成
player.addListener('volume', volumeChangeHandler); //监听音量改变
player.addListener('full', fullHandler); //监听全屏/非全屏切换
player.addListener('ended', endedHandler); //监听播放结束
player.addListener('screenshot', screenshotHandler); //监听截图功能
player.addListener('mouse', mouseHandler); //监听鼠标坐标
player.addListener('frontAd', frontAdHandler); //监听前置广告的动作
player.addListener('wheel', wheelHandler); //监听视频放大缩小
player.addListener('controlBar', controlBarHandler); //监听控制栏显示隐藏事件
player.addListener('clickEvent', clickEventHandler); //监听点击事件
player.addListener('definitionChange', definitionChangeHandler); //监听清晰度切换事件
player.addListener('speed', speedHandler); //监听加载速度*/
}
</script>
<br>
</td>
<td width="56%" valign="top">
<p style="padding:0 0 0 40px; font-size:30px; color:red; backgroud-color:#b3b6c7">无口罩</p>
<p class="no_pmask" style="padding:40px;"></p><br><br><br><br>
<p style="padding:0 0 0 40px; font-size:30px; color:#08d814; backgroud-color:#b3b6c7">有口罩</p>
<p class="pmask" style="padding:40px; ;"></p>
</td>
</tr>
<tr>
<td colspan="2" valign="top"><div style="position:relative;"><img src="image/b2f2.png" width="1250"/>
<?php for($i=0;$i<count($cams);$i++){
$r = get_mast_postion($cams[$i]["cam_x"],$cams[$i]["cam_y"],$cams[$i]["cam_area_w"],$cams[$i]["cam_area_h"],$area_w,$area_h,$cam_w,$cam_h);
?>
<div>
<div style="border: 2px #fff solid; border: none; position: absolute; left: <?php echo $r['left'];?>px; top: <?php echo $r['top'];?>px; transform: rotate(<?php echo $cams[$i]["cam_area_rotate"];?>deg);"> <img src="image/mask.png" width="<?php echo $area_w*$cams[$i]["cam_area_w"];?>" height="<?php echo $area_h*$cams[$i]["cam_area_h"];?>" />
</div>
<div id="cam<?php echo $i?>" class="cam area" style="left: <?php echo $cams[$i]["cam_x"];?>px;top: <?php echo $cams[$i]["cam_y"];?>px;"> <img src="image/cam.png" width="<?php echo $cam_w;?>" height="<?php echo $cam_h;?>"/> </div>
</div>
<?php }?>
</div></td>
</tr>
</table>
</div>
</div>
</div>
</div>
</div>
</body>
</html>
<?php
function get_mast_postion($cam_x,$cam_y,$cam_area_w,$cam_area_h,$area_w,$area_h,$cam_w,$cam_h){
$left=$cam_x-$cam_area_w*$area_w/2;
$top=$cam_y-$cam_area_h*$area_h/2;
$r['left'] = $left+$cam_w/2;
$r['top'] = $top+$cam_h/2;
return $r;
}
?>
此差异已折叠。
此差异已折叠。
<?xml version="1.0" encoding="utf-8"?>
<ckplayer>
<!--基本配置-->
<config>
<fullInteractive>true</fullInteractive><!--是否开启交互功能-->
<delay>30</delay><!--延迟加载视频,单位:毫秒-->
<timeFrequency>100</timeFrequency><!--计算当前播放时间和加载量的时间频率,单位:毫秒-->
<autoLoad>true</autoLoad><!--视频是否自动加载-->
<loadNext>0</loadNext><!--多段视频预加载的段数,设置成0则全部加载-->
<definition>true</definition><!--是否使用清晰度组件-->
<smartRemove>true</smartRemove><!--是否使用智能清理,使用该功能则在多段时当前播放段之前的段都会被清除出内存,减少对内存的使用-->
<bufferTime>200</bufferTime><!--缓存区的长度,单位:毫秒,不要小于100-->
<click>true</click><!--是否支持屏幕单击暂停-->
<doubleClick>true</doubleClick><!--是否支持屏幕双击全屏-->
<doubleClickInterval>200</doubleClickInterval><!--判断双击的标准,即二次单击间隔的时间差之内判断为是双击,单位:毫秒-->
<keyDown>
<space>true</space><!--是否启用空格键切换播放/暂停-->
<left>true</left>
<right>true</right>
<up>true</up>
<down>true</down>
</keyDown>
<timeJump>10</timeJump><!--快进快退时的秒数-->
<volumeJump>0.1</volumeJump><!--音量调整的数量,大于0小于1的小数-->
<timeScheduleAdjust>1</timeScheduleAdjust><!--是否可调节调节栏,0不启用,1是启用,2是只能前进(向右拖动),3是只能后退,4是只能前进但能回到第一次拖动时的位置,5是看过的地方可以随意拖动-->
<previewDefaultLoad>true</previewDefaultLoad><!--预览图片是否默认加载,优点是鼠标第一次经过进度条即可显示预览图片-->
<promptSpotTime>false</promptSpotTime><!--提示点文字是否在前面加上对应时间-->
<buttonMode>
<player>false</player><!--鼠标在播放器上是否显示可点击形态-->
<controlBar>false</controlBar><!--鼠标在控制栏上是否显示可点击形态-->
<timeSchedule>true</timeSchedule><!--鼠标在时间进度条上是否显示可点击形态-->
<volumeSchedule>true</volumeSchedule><!--鼠标在音量调节栏上是否显示可点击形态-->
</buttonMode>
<liveAndVod><!--直播+点播=时移功能-->
<open>false</open><!--是否开启,开启该功能需要设置flashvars里live=true-->
<vodTime>2</vodTime><!--可以回看的整点数-->
<start>start</start><!--回看请求参数-->
</liveAndVod>
<errorNum>1</errorNum><!--错误重连次数-->
<playCorrect>false</playCorrect><!--错误修正-->
<timeCorrect>true</timeCorrect><!--http视频播放时间错误纠正,有些因为视频格式的问题导致视频没有实际播放结束视频文件就返回了stop命令-->
<m3u8Definition><!--m3u8自动清晰度时按关键字来进行判断-->
<!--<tags>110k</tags>
<tags>200k</tags>
<tags>400k</tags>
<tags>600k</tags>
<tags>800k</tags>
<tags>1000k</tags>-->
</m3u8Definition>
<m3u8MaxBufferLength>30</m3u8MaxBufferLength><!--m3u8每次缓冲时间,单位:秒数-->
<split>,</split><!--当视频地址采用字符形式并且需要使用逗号或其它符号来切割数组里定义-->
<timeStamp></timeStamp><!--一个地址,用来请求当前时间戳,用于播放器内部时间效准-->
<addCallback>adPlay,adPause,playOrPause,videoPlay,videoPause,videoMute,videoEscMute,videoClear,changeVolume,fastBack,fastNext,videoSeek,newVideo,getMetaDate,videoRotation,videoBrightness,videoContrast,videoSaturation,videoHue,videoZoom,videoProportion,videoError,addListener,removeListener,addElement,getElement,deleteElement,animate,animateResume,animatePause,deleteAnimate,changeConfig,getConfig,openUrl,fullScreen,quitFullScreen,switchFull,screenshot,custom,changeControlBarShow,getCurrentSrc</addCallback>
</config>
<menu>
<ckkey></ckkey>
<name></name>
<link></link>
<domain></domain>
<version></version>
<more></more>
</menu>
<languagePath></languagePath>
<stylePath></stylePath>
<style>
<loading><!--显示的loading元素-->
<file></file>
<align>center</align><!--水平对齐方式:left,center,right-->
<vAlign>middle</vAlign><!--垂直对齐方式:top,middle,bottom-->
<offsetX>-100</offsetX><!--水平偏移量,单位:像素-->
<offsetY>-40</offsetY><!--垂直偏移量,单位:像素-->
</loading>
<logo>
<file></file>
<align>right</align><!--水平对齐方式:left,center,right-->
<vAlign>top</vAlign><!--垂直对齐方式:top,middle,bottom-->
<offsetX>-100</offsetX><!--水平偏移量,单位:像素-->
<offsetY>10</offsetY><!--垂直偏移量,单位:像素-->
</logo>
<advertisement><!--广告相关的配置-->
<time>5</time><!--广告默认播放时长以及多个广告时每个广告默认播放时间,单位:秒-->
<method>get</method><!--广告监测地址默认请求方式,get/post-->
<videoForce>false</videoForce><!--视频广告是否强制播放结束-->
<videoVolume>0.8</videoVolume><!--视频音量-->
<skipButtonShow>true</skipButtonShow><!--是否显示跳过广告按钮-->
<linkButtonShow>true</linkButtonShow><!--是否显示广告链接按钮,如果选择显示,只有在提供了广告链接地址时才会显示-->
<muteButtonShow>true</muteButtonShow><!--是否显示跳过广告按钮-->
<closeButtonShow>true</closeButtonShow><!--暂停时是否显示关闭广告按钮-->
<closeOtherButtonShow>true</closeOtherButtonShow><!--其它广告是否需要关闭广告按钮-->
<frontSkipButtonDelay>0</frontSkipButtonDelay><!--前置广告跳过广告按钮延时显示的时间,秒-->
<insertSkipButtonDelay>0</insertSkipButtonDelay><!--插入广告跳过广告按钮延时显示的时间,秒-->
<endSkipButtonDelay>0</endSkipButtonDelay><!--后置广告跳过广告按钮延时显示的时间,秒-->
<!--广告拉伸方式,0=原始大小,1=自动缩放,2=只有当广告的宽或高大于播放器宽高时才进行缩放,3=参考播放器宽高,4=宽度参考播放器宽、高度自动,5=高度参考播放器高、宽度自动-->
<frontStretched>1</frontStretched>
<insertStretched>2</insertStretched>
<pauseStretched>2</pauseStretched>
<endStretched>2</endStretched>
</advertisement>
<video><!--视频的默认比例-->
<defaultWidth>4</defaultWidth>
<defaultHeight>3</defaultHeight>
</video>
</style>
<!--做为前端flashvars的补充-->
<flashvars></flashvars>
</ckplayer>
\ No newline at end of file
Copyright (c) 2017 Dailymotion (http://www.dailymotion.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
src/remux/mp4-generator.js and src/demux/exp-golomb.js implementation in this project
are derived from the HLS library for video.js (https://github.com/videojs/videojs-contrib-hls)
That work is also covered by the Apache 2 License, following copyright:
Copyright (c) 2013-2015 Brightcove
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
因为 它太大了无法显示 source diff 。你可以改为 查看blob
因为 它太大了无法显示 source diff 。你可以改为 查看blob
<?xml version="1.0" encoding="utf-8"?>
<language>
<adCountdown>[$second]</adCountdown><!--广告播放结束倒计时-->
<skipDelay>[$second]</skipDelay>
<buttonOver>
<play>点击播放</play>
<pause>暂停播放</pause>
<mute>静音</mute>
<escMute>恢复音量</escMute>
<full>全屏</full>
<escFull>退出全屏</escFull>
<previousPage>上一集</previousPage>
<nextPage>下一集</nextPage>
<definition>点击选择清晰度</definition>
</buttonOver>
<volumeSliderOver>
音量:[$volume]%
</volumeSliderOver>
<buffer>[$percentage]%</buffer>
<timeSliderOver><!--鼠标经过进度条显示的时间格式-->
[$timeh]:[$timei]:[$times]
</timeSliderOver>
<liveAndVod>
[$timeh]:[$timei]:[$times]
</liveAndVod>
<live>
直播中 [$liveTimeY]-[$liveTimem]-[$liveTimed] [$liveTimeh]:[$liveTimei]:[$liveTimes]
</live>
<m3u8Definition>
<name>流畅</name>
<name>低清</name>
<name>标清</name>
<name>高清</name>
<name>超清</name>
<name>蓝光</name>
<name>未知</name>
</m3u8Definition>
<error>
<cannotFindUrl>视频地址不存在</cannotFindUrl>
<streamNotFound>加载失败</streamNotFound>
<formatError>视频格式错误</formatError>
</error>
<definition>自动</definition>
</language>
\ No newline at end of file
此差异已折叠。
此差异已折叠。
# 部署图像分类服务-以pyramidbox_lite_server_mask为例
## 简介
目标检测作为深度学习常见任务,在各种场景下都有所使用。`pyramidbox_lite_server_mask`模型可以应用于口罩检测任务,关于`pyramidbox_lite_server_mask`的具体信息请参见[pyramidbox_lite_server_mask](https://www.paddlepaddle.org.cn/hubdetail?name=pyramidbox_lite_server_mask&en_category=ObjectDetection)
使用PaddleHub Serving可以轻松部署一个在线目标检测服务API,可快速实现在线目标检测等web服务,如PaddlePaddle官网提供的[口罩检测场景示例](https://paddlepaddle.org.cn/hub/scene/maskdetect),如下图所示:
<p align="center">
<img src="../../../../docs/imgs/mask_demo.jpg" width="65%" />
</p>
下面就带领大家使用PaddleHub Serving,通过简单几步部署一个目标检测服务。
## Step1:启动PaddleHub Serving
启动命令如下:
```shell
$ hub serving start -m pyramidbox_lite_server_mask
```
启动时会显示加载模型过程,启动成功后显示:
```shell
Loading pyramidbox_lite_server_mask successful.
```
这样就完成了一个口罩检测服务化API的部署,默认端口号为8866。
## Step2:测试图像生成在线API
我们用来测试的样例图片为:
<p align="center">
<img src="../../../../docs/imgs/family_mask.jpg" width="65%" />
</p>
<p align="center">
<img src="../../../../docs/imgs/woman_mask.jpg" width="65%" />
</p>
准备的数据格式为:
```python
files = [("image", file_1), ("image", file_2)]
```
**NOTE:** 文件列表每个元素第一个参数为"image"。
代码如下:
```python
>>> # 指定要检测的图片并生成列表[("image", img_1), ("image", img_2), ... ]
>>> file_list = ["../../../../docs/imgs/family_mask.jpg", "../../../../docs/imgs/girl_mask.jpg"]
>>> files = [("image", (open(item, "rb"))) for item in file_list]
```
## Step3:获取并验证结果
通过发送请求到目标检测服务API,就可得到结果,代码如下:
```python
>>> # 指定检测方法为pyramidbox_lite_server_mask并发送post请求
>>> url = "http://127.0.0.1:8866/predict/image/pyramidbox_lite_server_mask"
>>> r = requests.post(url=url, files=files)
```
我们可以打印接口返回结果:
```python
>>> results = eval(r.json()["results"])
>>> print(json.dumps(results, indent=4, ensure_ascii=False))
[
{
"data": [
{
"label": "MASK",
"left": 455.5180733203888,
"right": 658.8289226293564,
"top": 186.38022020459175,
"bottom": 442.67284870147705,
"confidence": 0.92117363
},
{
"label": "MASK",
"left": 938.9076416492462,
"right": 1121.0804233551025,
"top": 326.9856423139572,
"bottom": 586.0468536615372,
"confidence": 0.997152
},
{
"label": "NO MASK",
"left": 1166.189564704895,
"right": 1325.6211009025574,
"top": 295.55220007896423,
"bottom": 496.9406336545944,
"confidence": 0.9346678
}
],
"path": "",
"id": 1
},
{
"data": [
{
"label": "MASK",
"left": 1346.7342281341553,
"right": 1593.7974529266357,
"top": 239.36296990513802,
"bottom": 574.6375751495361,
"confidence": 0.95378655
},
{
"label": "MASK",
"left": 840.5126552581787,
"right": 1083.8391423225403,
"top": 417.5169044137001,
"bottom": 733.8856244087219,
"confidence": 0.85434145
}
],
"path": "",
"id": 2
}
]
```
根据结果可以看出准确识别了请求图片中的人脸位置及戴口罩确信度。
pyramidbox_lite_server_mask返回的结果还包括标注检测框的图像的base64编码格式,经过转换可以得到生成图像,代码如下:
```python
>>> for item in results:
... with open(output_path, "wb") as fp:
... fp.write(base64.b64decode(item["base64"].split(',')[-1]))
```
查看指定输出文件夹,就能看到生成图像了,如图:
<p align="center">
<img src="./output/family_mask.jpg" width="65%" />
</p>
<p align="center">
<img src="./output/woman_mask.jpg" width="65%" />
</p>
这样我们就完成了对目标检测服务化的部署和测试。
完整的测试代码见[pyramidbox_lite_server_mask_file_serving_demo.py](pyramidbox_lite_server_mask_file_serving_demo.py)
## 进一步提升模型服务性能
`pyramidbox_lite_server_mask`还支持直接传入opencv mat表示的图片,不产生结果文件,而是直接输出检测的人脸位置和戴口罩概率,响应时间平均提升20%以上,可用于对响应时间和性能要求更高的场景。
使用直接传输数据的模式,仅需要修改上文Step2中的POST方法参数,具体如下:
```python
>>> with open(file="../../../../docs/imgs/family_mask.jpg", mode="rb") as fp:
... base64_data = base64.b64encode(fp.read())
>>> base64_data = str(base64_data, encoding="utf8")
>>> data = {"b64s": [base64_data]}
>>> data = {"data": json.dumps(data)}
```
进行HTTP请求时只需将data参数传入即可,具体如下:
```python
>>> r = requests.post(url=url, data=data)
```
对结果的处理与上文一致,但需注意此种方法仅输出识别结果,不产生结果文件,因此不能获得生成图片。
完整的测试代码见[pyramidbox_lite_server_mask_serving_demo.py](pyramidbox_lite_server_mask_serving_demo.py)
# coding: utf8
import requests
import json
import base64
import os
if __name__ == "__main__":
file_list = [
"../../../../docs/imgs/family_mask.jpg",
"../../../../docs/imgs/woman_mask.jpg"
]
files = [("image", (open(item, "rb"))) for item in file_list]
# 指定检测方法为pyramidbox_lite_server_mask并发送post请求
url = "http://127.0.0.1:8866/predict/image/pyramidbox_lite_server_mask"
r = requests.post(url=url, files=files)
results = eval(r.json()["results"])
if not os.path.exists("output"):
os.mkdir("output")
for item in results:
with open(os.path.join("output", item["path"]), "wb") as fp:
fp.write(base64.b64decode(item["base64"].split(',')[-1]))
item.pop("base64")
print(json.dumps(results, indent=4, ensure_ascii=False))
# coding: utf8
import requests
import json
import base64
if __name__ == "__main__":
# 获取第一张图片文件的base64编码
with open(file="../../../../docs/imgs/family_mask.jpg", mode="rb") as fp:
base64_data1 = base64.b64encode(fp.read())
base64_data1 = str(base64_data1, encoding="utf8")
# 获取第二张图片文件的base64编码
with open(file="../../../../docs/imgs/woman_mask.jpg", mode="rb") as fp:
base64_data2 = base64.b64encode(fp.read())
base64_data2 = str(base64_data2, encoding="utf8")
data = {"b64s": [base64_data1, base64_data2]}
data = {"data": json.dumps(data)}
# 指定检测方法为pyramidbox_lite_server_mask并发送post请求
url = "http://127.0.0.1:8866/predict/image/pyramidbox_lite_server_mask"
r = requests.post(url=url, data=data)
# 得到并打印检测结果
results = eval(r.json()["results"])
print(json.dumps(results, indent=4, ensure_ascii=False))
......@@ -103,7 +103,7 @@ upstream
## 代码风格和命名约定
* NNI 遵循 [PEP8](https://www.python.org/dev/peps/pep-0008/) 的 Python 代码命名约定。在提交拉取请求时,请尽量遵循此规范。 可通过`flake8``pylint`的提示工具来帮助遵循规范。
* PaddleHub 遵循 [PEP8](https://www.python.org/dev/peps/pep-0008/) 的 Python 代码命名约定。在提交拉取请求时,请尽量遵循此规范。 可通过`flake8``pylint`的提示工具来帮助遵循规范。
## 文档
......
# 更新历史
## `v1.5.2`
* 优化pyramidbox_lite_server_mask、pyramidbox_lite_mobile_mask模型的服务化部署性能
## `v1.5.1`
......
......@@ -179,6 +179,9 @@ class ServingCommand(BaseCommand):
from paddle_gpu_serving.run import BertServer
bs = BertServer(with_gpu=args.use_gpu)
bs.with_model(model_name=args.modules[0])
CacheUpdater(
"hub_bert_service", module=args.modules[0],
version="0.0.0").start()
bs.run(gpu_index=args.gpu, port=int(args.port))
@staticmethod
......
......@@ -335,10 +335,10 @@ def strflist_version(version_list):
version_list = version_list[1:-1].split(",")
result = ""
if version_list[0] != "-1.0.0":
result = ">" + version_list[0]
result = ">=" + version_list[0]
if version_list[1] != "99.0.0":
if result != "":
result = result + ", " + "<" + version_list[1]
result = result + ", " + "<=" + version_list[1]
else:
result = "<" + version_list[1]
result = "<=" + version_list[1]
return result if result != "" else "-"
......@@ -51,6 +51,7 @@ def predict_nlp(module_info, input_text, req_id, extra=None):
if module_info["name"] == "lac" and extra.get("user_dict", []) != []:
predict_args.update({"user_dict": extra.get("user_dict", [])[0]})
try:
res = predict_method(**predict_args)
except Exception as err:
......
......@@ -13,5 +13,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
""" PaddleHub version string """
hub_version = "1.5.1"
hub_version = "1.5.2"
module_proto_version = "1.0.0"
......@@ -26,6 +26,3 @@ pandas < 0.25.0 ; python_version < "3"
# gunicorn not support windows
gunicorn >= 19.10.0; sys_platform != "win32"
# moviepy 1.0.1 not support imageio>2.5
moviepy < 1.0.0 ; python_version < "3"
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册