Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
38d6c4c0
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
38d6c4c0
编写于
9月 27, 2020
作者:
H
haoyuying
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add openpose
上级
c07d1ffe
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
835 addition
and
2 deletion
+835
-2
demo/key_point_detection/openpose_body/demo.jpg
demo/key_point_detection/openpose_body/demo.jpg
+0
-0
demo/key_point_detection/openpose_body/predict.py
demo/key_point_detection/openpose_body/predict.py
+10
-0
demo/key_point_detection/openpose_hands/demo.jpg
demo/key_point_detection/openpose_hands/demo.jpg
+0
-0
demo/key_point_detection/openpose_hands/predict.py
demo/key_point_detection/openpose_hands/predict.py
+9
-0
hub_module/modules/image/keypoint_detection/openpose_body_estimation/module.py
...age/keypoint_detection/openpose_body_estimation/module.py
+196
-0
hub_module/modules/image/keypoint_detection/openpose_hands_estimation/module.py
...ge/keypoint_detection/openpose_hands_estimation/module.py
+187
-0
paddlehub/process/functional.py
paddlehub/process/functional.py
+9
-0
paddlehub/process/transforms.py
paddlehub/process/transforms.py
+424
-2
未找到文件。
demo/key_point_detection/openpose_body/demo.jpg
0 → 100644
浏览文件 @
38d6c4c0
16.0 KB
demo/key_point_detection/openpose_body/predict.py
0 → 100644
浏览文件 @
38d6c4c0
import
paddle
import
paddlehub
as
hub
if
__name__
==
"__main__"
:
paddle
.
disable_static
()
model
=
hub
.
Module
(
name
=
'openpose_body_estimation'
)
model
.
eval
()
out1
,
out2
=
model
.
predict
(
"demo.jpg"
)
print
(
out1
.
shape
)
demo/key_point_detection/openpose_hands/demo.jpg
0 → 100644
浏览文件 @
38d6c4c0
16.0 KB
demo/key_point_detection/openpose_hands/predict.py
0 → 100644
浏览文件 @
38d6c4c0
import
paddle
import
paddlehub
as
hub
if
__name__
==
"__main__"
:
paddle
.
disable_static
()
model
=
hub
.
Module
(
name
=
'openpose_hands_estimation'
)
model
.
eval
()
all_hand_peaks
=
model
.
predict
(
"demo.jpg"
)
hub_module/modules/image/keypoint_detection/openpose_body_estimation/module.py
0 → 100644
浏览文件 @
38d6c4c0
import
os
import
copy
from
collections
import
OrderedDict
import
cv2
import
paddle
import
paddle.nn
as
nn
import
numpy
as
np
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.process.transforms
import
ResizeScaling
,
PadDownRight
,
Normalize
,
RemovePadding
,
GetPeak
,
Connection
,
DrawPose
,
Candidate
@
moduleinfo
(
name
=
"openpose_body_estimation"
,
type
=
"CV/image_editing"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"Openpose_body_estimation is a body pose estimation model based on Realtime Multi-Person 2D Pose
\
Estimation using Part Affinity Fields."
,
version
=
"1.0.0"
)
class
BodyposeModel
(
nn
.
Layer
):
"""BodyposeModel
Args:
load_checkpoint(str): Checkpoint save path, default is None.
visualization (bool): Whether to save the estimation result. Default is True.
"""
def
__init__
(
self
,
load_checkpoint
:
str
=
None
,
visualization
:
bool
=
True
):
super
(
BodyposeModel
,
self
).
__init__
()
self
.
resize_func
=
ResizeScaling
()
self
.
pad_func
=
PadDownRight
()
self
.
norm_func
=
Normalize
(
std
=
[
1
,
1
,
1
])
self
.
remove_pad
=
RemovePadding
()
self
.
get_peak
=
GetPeak
()
self
.
get_connection
=
Connection
()
self
.
get_candidate
=
Candidate
()
self
.
draw_pose
=
DrawPose
()
self
.
visualization
=
visualization
no_relu_layers
=
[
'conv5_5_CPM_L1'
,
'conv5_5_CPM_L2'
,
'Mconv7_stage2_L1'
,
\
'Mconv7_stage2_L2'
,
'Mconv7_stage3_L1'
,
'Mconv7_stage3_L2'
,
\
'Mconv7_stage4_L1'
,
'Mconv7_stage4_L2'
,
'Mconv7_stage5_L1'
,
\
'Mconv7_stage5_L2'
,
'Mconv7_stage6_L1'
,
'Mconv7_stage6_L1'
]
blocks
=
{}
block0
=
OrderedDict
([(
'conv1_1'
,
[
3
,
64
,
3
,
1
,
1
]),
(
'conv1_2'
,
[
64
,
64
,
3
,
1
,
1
]),
(
'pool1_stage1'
,
[
2
,
2
,
0
]),
(
'conv2_1'
,
[
64
,
128
,
3
,
1
,
1
]),
(
'conv2_2'
,
[
128
,
128
,
3
,
1
,
1
]),
(
'pool2_stage1'
,
[
2
,
2
,
0
]),
(
'conv3_1'
,
[
128
,
256
,
3
,
1
,
1
]),
(
'conv3_2'
,
[
256
,
256
,
3
,
1
,
1
]),
(
'conv3_3'
,
[
256
,
256
,
3
,
1
,
1
]),
(
'conv3_4'
,
[
256
,
256
,
3
,
1
,
1
]),
(
'pool3_stage1'
,
[
2
,
2
,
0
]),
(
'conv4_1'
,
[
256
,
512
,
3
,
1
,
1
]),
(
'conv4_2'
,
[
512
,
512
,
3
,
1
,
1
]),
(
'conv4_3_CPM'
,
[
512
,
256
,
3
,
1
,
1
]),
(
'conv4_4_CPM'
,
[
256
,
128
,
3
,
1
,
1
])])
block1_1
=
OrderedDict
([(
'conv5_1_CPM_L1'
,
[
128
,
128
,
3
,
1
,
1
]),
(
'conv5_2_CPM_L1'
,
[
128
,
128
,
3
,
1
,
1
]),
(
'conv5_3_CPM_L1'
,
[
128
,
128
,
3
,
1
,
1
]),
(
'conv5_4_CPM_L1'
,
[
128
,
512
,
1
,
1
,
0
]),
(
'conv5_5_CPM_L1'
,
[
512
,
38
,
1
,
1
,
0
])])
block1_2
=
OrderedDict
([(
'conv5_1_CPM_L2'
,
[
128
,
128
,
3
,
1
,
1
]),
(
'conv5_2_CPM_L2'
,
[
128
,
128
,
3
,
1
,
1
]),
(
'conv5_3_CPM_L2'
,
[
128
,
128
,
3
,
1
,
1
]),
(
'conv5_4_CPM_L2'
,
[
128
,
512
,
1
,
1
,
0
]),
(
'conv5_5_CPM_L2'
,
[
512
,
19
,
1
,
1
,
0
])])
blocks
[
'block1_1'
]
=
block1_1
blocks
[
'block1_2'
]
=
block1_2
self
.
model0
=
self
.
make_layers
(
block0
,
no_relu_layers
)
for
i
in
range
(
2
,
7
):
blocks
[
'block%d_1'
%
i
]
=
OrderedDict
([(
'Mconv1_stage%d_L1'
%
i
,
[
185
,
128
,
7
,
1
,
3
]),
(
'Mconv2_stage%d_L1'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv3_stage%d_L1'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv4_stage%d_L1'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv5_stage%d_L1'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv6_stage%d_L1'
%
i
,
[
128
,
128
,
1
,
1
,
0
]),
(
'Mconv7_stage%d_L1'
%
i
,
[
128
,
38
,
1
,
1
,
0
])])
blocks
[
'block%d_2'
%
i
]
=
OrderedDict
([(
'Mconv1_stage%d_L2'
%
i
,
[
185
,
128
,
7
,
1
,
3
]),
(
'Mconv2_stage%d_L2'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv3_stage%d_L2'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv4_stage%d_L2'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv5_stage%d_L2'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv6_stage%d_L2'
%
i
,
[
128
,
128
,
1
,
1
,
0
]),
(
'Mconv7_stage%d_L2'
%
i
,
[
128
,
19
,
1
,
1
,
0
])])
for
k
in
blocks
.
keys
():
blocks
[
k
]
=
self
.
make_layers
(
blocks
[
k
],
no_relu_layers
)
self
.
model1_1
=
blocks
[
'block1_1'
]
self
.
model2_1
=
blocks
[
'block2_1'
]
self
.
model3_1
=
blocks
[
'block3_1'
]
self
.
model4_1
=
blocks
[
'block4_1'
]
self
.
model5_1
=
blocks
[
'block5_1'
]
self
.
model6_1
=
blocks
[
'block6_1'
]
self
.
model1_2
=
blocks
[
'block1_2'
]
self
.
model2_2
=
blocks
[
'block2_2'
]
self
.
model3_2
=
blocks
[
'block3_2'
]
self
.
model4_2
=
blocks
[
'block4_2'
]
self
.
model5_2
=
blocks
[
'block5_2'
]
self
.
model6_2
=
blocks
[
'block6_2'
]
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'body_estimation.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://bj.bcebos.com/paddlehub/model/image/keypoint_detection/body_estimation.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
make_layers
(
self
,
block
:
dict
,
no_relu_layers
:
list
):
layers
=
[]
for
layer_name
,
v
in
block
.
items
():
if
'pool'
in
layer_name
:
layer
=
nn
.
MaxPool2d
(
kernel_size
=
v
[
0
],
stride
=
v
[
1
],
padding
=
v
[
2
])
layers
.
append
((
layer_name
,
layer
))
else
:
conv2d
=
nn
.
Conv2d
(
in_channels
=
v
[
0
],
out_channels
=
v
[
1
],
kernel_size
=
v
[
2
],
stride
=
v
[
3
],
padding
=
v
[
4
])
layers
.
append
((
layer_name
,
conv2d
))
if
layer_name
not
in
no_relu_layers
:
layers
.
append
((
'relu_'
+
layer_name
,
nn
.
ReLU
()))
layers
=
tuple
(
layers
)
return
nn
.
Sequential
(
*
layers
)
def
transform
(
self
,
orgimg
:
np
.
ndarray
,
scale_search
:
float
=
0.5
):
process
=
self
.
resize_func
(
orgimg
,
scale_search
)
imageToTest_padded
,
pad
=
self
.
pad_func
(
process
)
process
=
self
.
norm_func
(
imageToTest_padded
)
process
=
np
.
ascontiguousarray
(
np
.
transpose
(
process
[:,
:,
:,
np
.
newaxis
],
(
3
,
2
,
0
,
1
))).
astype
(
"float32"
)
return
process
,
imageToTest_padded
,
pad
def
forward
(
self
,
x
:
paddle
.
Tensor
):
out1
=
self
.
model0
(
x
)
out1_1
=
self
.
model1_1
(
out1
)
out1_2
=
self
.
model1_2
(
out1
)
out2
=
paddle
.
concat
([
out1_1
,
out1_2
,
out1
],
1
)
out2_1
=
self
.
model2_1
(
out2
)
out2_2
=
self
.
model2_2
(
out2
)
out3
=
paddle
.
concat
([
out2_1
,
out2_2
,
out1
],
1
)
out3_1
=
self
.
model3_1
(
out3
)
out3_2
=
self
.
model3_2
(
out3
)
out4
=
paddle
.
concat
([
out3_1
,
out3_2
,
out1
],
1
)
out4_1
=
self
.
model4_1
(
out4
)
out4_2
=
self
.
model4_2
(
out4
)
out5
=
paddle
.
concat
([
out4_1
,
out4_2
,
out1
],
1
)
out5_1
=
self
.
model5_1
(
out5
)
out5_2
=
self
.
model5_2
(
out5
)
out6
=
paddle
.
concat
([
out5_1
,
out5_2
,
out1
],
1
)
out6_1
=
self
.
model6_1
(
out6
)
out6_2
=
self
.
model6_2
(
out6
)
return
out6_1
,
out6_2
def
predict
(
self
,
img_path
:
str
,
save_path
:
str
=
"result"
):
orgImg
=
cv2
.
imread
(
img_path
)
data
,
imageToTest_padded
,
pad
=
self
.
transform
(
orgImg
)
Mconv7_stage6_L1
,
Mconv7_stage6_L2
=
self
.
forward
(
paddle
.
to_tensor
(
data
))
Mconv7_stage6_L1
=
Mconv7_stage6_L1
.
numpy
()
Mconv7_stage6_L2
=
Mconv7_stage6_L2
.
numpy
()
heatmap_avg
=
self
.
remove_pad
(
Mconv7_stage6_L2
,
imageToTest_padded
,
orgImg
,
pad
)
paf_avg
=
self
.
remove_pad
(
Mconv7_stage6_L1
,
imageToTest_padded
,
orgImg
,
pad
)
all_peaks
=
self
.
get_peak
(
heatmap_avg
)
connection_all
,
special_k
=
self
.
get_connection
(
all_peaks
,
paf_avg
,
orgImg
)
candidate
,
subset
=
self
.
get_candidate
(
all_peaks
,
connection_all
,
special_k
)
if
self
.
visualization
:
canvas
=
copy
.
deepcopy
(
orgImg
)
canvas
=
self
.
draw_pose
(
canvas
,
candidate
,
subset
)
if
not
os
.
path
.
exists
(
save_path
):
os
.
mkdir
(
save_path
)
save_path
=
os
.
path
.
join
(
save_path
,
img_path
.
rsplit
(
"/"
,
1
)[
-
1
])
cv2
.
imwrite
(
save_path
,
canvas
)
return
candidate
,
subset
if
__name__
==
"__main__"
:
import
numpy
as
np
paddle
.
disable_static
()
model
=
BodyposeModel
()
model
.
eval
()
out1
,
out2
=
model
.
predict
(
"demo.jpg"
)
print
(
out1
.
shape
)
hub_module/modules/image/keypoint_detection/openpose_hands_estimation/module.py
0 → 100644
浏览文件 @
38d6c4c0
import
os
import
copy
from
collections
import
OrderedDict
import
cv2
import
paddle
import
numpy
as
np
import
paddle.nn
as
nn
import
paddlehub
as
hub
from
skimage.measure
import
label
from
scipy.ndimage.filters
import
gaussian_filter
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.process.functional
import
npmax
from
paddlehub.process.transforms
import
HandDetect
,
ResizeScaling
,
PadDownRight
,
RemovePadding
,
DrawPose
,
DrawHandPose
,
Normalize
@
moduleinfo
(
name
=
"openpose_hands_estimation"
,
type
=
"CV/image_editing"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"Openpose_hands_estimation is a hand pose estimation model based on Hand Keypoint Detection in
\
Single Images using Multiview Bootstrapping."
,
version
=
"1.0.0"
)
class
HandposeModel
(
nn
.
Layer
):
"""HandposeModel
Args:
load_checkpoint(str): Checkpoint save path, default is None.
visualization (bool): Whether to save the estimation result. Default is True.
"""
def
__init__
(
self
,
load_checkpoint
:
str
=
None
,
visualization
:
bool
=
True
):
super
(
HandposeModel
,
self
).
__init__
()
self
.
visualization
=
visualization
self
.
hand_detect
=
HandDetect
()
self
.
resize_func
=
ResizeScaling
()
self
.
pad_func
=
PadDownRight
()
self
.
remove_pad
=
RemovePadding
()
self
.
draw_pose
=
DrawPose
()
self
.
draw_hand
=
DrawHandPose
()
self
.
norm_func
=
Normalize
(
std
=
[
1
,
1
,
1
])
no_relu_layers
=
[
'conv6_2_CPM'
,
'Mconv7_stage2'
,
'Mconv7_stage3'
,
\
'Mconv7_stage4'
,
'Mconv7_stage5'
,
'Mconv7_stage6'
]
block1_0
=
OrderedDict
([(
'conv1_1'
,
[
3
,
64
,
3
,
1
,
1
]),
(
'conv1_2'
,
[
64
,
64
,
3
,
1
,
1
]),
(
'pool1_stage1'
,
[
2
,
2
,
0
]),
(
'conv2_1'
,
[
64
,
128
,
3
,
1
,
1
]),
(
'conv2_2'
,
[
128
,
128
,
3
,
1
,
1
]),
(
'pool2_stage1'
,
[
2
,
2
,
0
]),
(
'conv3_1'
,
[
128
,
256
,
3
,
1
,
1
]),
(
'conv3_2'
,
[
256
,
256
,
3
,
1
,
1
]),
(
'conv3_3'
,
[
256
,
256
,
3
,
1
,
1
]),
(
'conv3_4'
,
[
256
,
256
,
3
,
1
,
1
]),
(
'pool3_stage1'
,
[
2
,
2
,
0
]),
(
'conv4_1'
,
[
256
,
512
,
3
,
1
,
1
]),
(
'conv4_2'
,
[
512
,
512
,
3
,
1
,
1
]),
(
'conv4_3'
,
[
512
,
512
,
3
,
1
,
1
]),
(
'conv4_4'
,
[
512
,
512
,
3
,
1
,
1
]),
(
'conv5_1'
,
[
512
,
512
,
3
,
1
,
1
]),
(
'conv5_2'
,
[
512
,
512
,
3
,
1
,
1
]),
(
'conv5_3_CPM'
,
[
512
,
128
,
3
,
1
,
1
])])
block1_1
=
OrderedDict
([(
'conv6_1_CPM'
,
[
128
,
512
,
1
,
1
,
0
]),
(
'conv6_2_CPM'
,
[
512
,
22
,
1
,
1
,
0
])])
blocks
=
{}
blocks
[
'block1_0'
]
=
block1_0
blocks
[
'block1_1'
]
=
block1_1
for
i
in
range
(
2
,
7
):
blocks
[
'block%d'
%
i
]
=
OrderedDict
([(
'Mconv1_stage%d'
%
i
,
[
150
,
128
,
7
,
1
,
3
]),
(
'Mconv2_stage%d'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv3_stage%d'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv4_stage%d'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv5_stage%d'
%
i
,
[
128
,
128
,
7
,
1
,
3
]),
(
'Mconv6_stage%d'
%
i
,
[
128
,
128
,
1
,
1
,
0
]),
(
'Mconv7_stage%d'
%
i
,
[
128
,
22
,
1
,
1
,
0
])])
for
k
in
blocks
.
keys
():
blocks
[
k
]
=
self
.
make_layers
(
blocks
[
k
],
no_relu_layers
)
self
.
model1_0
=
blocks
[
'block1_0'
]
self
.
model1_1
=
blocks
[
'block1_1'
]
self
.
model2
=
blocks
[
'block2'
]
self
.
model3
=
blocks
[
'block3'
]
self
.
model4
=
blocks
[
'block4'
]
self
.
model5
=
blocks
[
'block5'
]
self
.
model6
=
blocks
[
'block6'
]
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'hand_estimation.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://bj.bcebos.com/paddlehub/model/image/keypoint_detection/hand_estimation.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
make_layers
(
self
,
block
:
dict
,
no_relu_layers
:
list
):
layers
=
[]
for
layer_name
,
v
in
block
.
items
():
if
'pool'
in
layer_name
:
layer
=
nn
.
MaxPool2d
(
kernel_size
=
v
[
0
],
stride
=
v
[
1
],
padding
=
v
[
2
])
layers
.
append
((
layer_name
,
layer
))
else
:
conv2d
=
nn
.
Conv2d
(
in_channels
=
v
[
0
],
out_channels
=
v
[
1
],
kernel_size
=
v
[
2
],
stride
=
v
[
3
],
padding
=
v
[
4
])
layers
.
append
((
layer_name
,
conv2d
))
if
layer_name
not
in
no_relu_layers
:
layers
.
append
((
'relu_'
+
layer_name
,
nn
.
ReLU
()))
layers
=
tuple
(
layers
)
return
nn
.
Sequential
(
*
layers
)
def
forward
(
self
,
x
:
paddle
.
Tensor
):
out1_0
=
self
.
model1_0
(
x
)
out1_1
=
self
.
model1_1
(
out1_0
)
concat_stage2
=
paddle
.
concat
([
out1_1
,
out1_0
],
1
)
out_stage2
=
self
.
model2
(
concat_stage2
)
concat_stage3
=
paddle
.
concat
([
out_stage2
,
out1_0
],
1
)
out_stage3
=
self
.
model3
(
concat_stage3
)
concat_stage4
=
paddle
.
concat
([
out_stage3
,
out1_0
],
1
)
out_stage4
=
self
.
model4
(
concat_stage4
)
concat_stage5
=
paddle
.
concat
([
out_stage4
,
out1_0
],
1
)
out_stage5
=
self
.
model5
(
concat_stage5
)
concat_stage6
=
paddle
.
concat
([
out_stage5
,
out1_0
],
1
)
out_stage6
=
self
.
model6
(
concat_stage6
)
return
out_stage6
def
hand_estimation
(
self
,
handimg
:
np
.
ndarray
,
scale_search
:
list
):
heatmap_avg
=
np
.
zeros
((
handimg
.
shape
[
0
],
handimg
.
shape
[
1
],
22
))
for
scale
in
scale_search
:
process
=
self
.
resize_func
(
handimg
,
scale
)
imageToTest_padded
,
pad
=
self
.
pad_func
(
process
)
process
=
self
.
norm_func
(
imageToTest_padded
)
process
=
np
.
ascontiguousarray
(
np
.
transpose
(
process
[:,
:,
:,
np
.
newaxis
],
(
3
,
2
,
0
,
1
))).
astype
(
"float32"
)
data
=
self
.
forward
(
paddle
.
to_tensor
(
process
))
data
=
data
.
numpy
()
heatmap
=
self
.
remove_pad
(
data
,
imageToTest_padded
,
handimg
,
pad
)
heatmap_avg
+=
heatmap
/
len
(
scale_search
)
all_peaks
=
[]
for
part
in
range
(
21
):
map_ori
=
heatmap_avg
[:,
:,
part
]
one_heatmap
=
gaussian_filter
(
map_ori
,
sigma
=
3
)
binary
=
np
.
ascontiguousarray
(
one_heatmap
>
0.05
,
dtype
=
np
.
uint8
)
if
np
.
sum
(
binary
)
==
0
:
all_peaks
.
append
([
0
,
0
])
continue
label_img
,
label_numbers
=
label
(
binary
,
return_num
=
True
,
connectivity
=
binary
.
ndim
)
max_index
=
np
.
argmax
([
np
.
sum
(
map_ori
[
label_img
==
i
])
for
i
in
range
(
1
,
label_numbers
+
1
)])
+
1
label_img
[
label_img
!=
max_index
]
=
0
map_ori
[
label_img
==
0
]
=
0
y
,
x
=
npmax
(
map_ori
)
all_peaks
.
append
([
x
,
y
])
return
np
.
array
(
all_peaks
)
def
predict
(
self
,
img_path
:
str
,
save_path
:
str
=
'result'
,
scale
:
list
=
[
0.5
,
1.0
,
1.5
,
2.0
]):
self
.
body_model
=
hub
.
Module
(
name
=
'openpose_body_estimation'
)
self
.
body_model
.
eval
()
org_img
=
cv2
.
imread
(
img_path
)
candidate
,
subset
=
self
.
body_model
.
predict
(
img_path
)
hands_list
=
self
.
hand_detect
(
candidate
,
subset
,
org_img
)
all_hand_peaks
=
[]
for
x
,
y
,
w
,
is_left
in
hands_list
:
peaks
=
self
.
hand_estimation
(
org_img
[
y
:
y
+
w
,
x
:
x
+
w
,
:],
scale
)
peaks
[:,
0
]
=
np
.
where
(
peaks
[:,
0
]
==
0
,
peaks
[:,
0
],
peaks
[:,
0
]
+
x
)
peaks
[:,
1
]
=
np
.
where
(
peaks
[:,
1
]
==
0
,
peaks
[:,
1
],
peaks
[:,
1
]
+
y
)
all_hand_peaks
.
append
(
peaks
)
if
self
.
visualization
:
canvas
=
copy
.
deepcopy
(
org_img
)
canvas
=
self
.
draw_pose
(
canvas
,
candidate
,
subset
)
canvas
=
self
.
draw_hand
(
canvas
,
all_hand_peaks
)
if
not
os
.
path
.
exists
(
save_path
):
os
.
mkdir
(
save_path
)
save_path
=
os
.
path
.
join
(
save_path
,
img_path
.
rsplit
(
"/"
,
1
)[
-
1
])
cv2
.
imwrite
(
save_path
,
canvas
)
return
all_hand_peaks
if
__name__
==
"__main__"
:
import
numpy
as
np
paddle
.
disable_static
()
model
=
HandposeModel
()
model
.
eval
()
out1
=
model
.
predict
(
"detect_hand4.jpg"
)
paddlehub/process/functional.py
浏览文件 @
38d6c4c0
...
@@ -137,3 +137,12 @@ def gram_matrix(data: paddle.Tensor) -> paddle.Tensor:
...
@@ -137,3 +137,12 @@ def gram_matrix(data: paddle.Tensor) -> paddle.Tensor:
features_t
=
features
.
transpose
((
0
,
2
,
1
))
features_t
=
features
.
transpose
((
0
,
2
,
1
))
gram
=
features
.
bmm
(
features_t
)
/
(
ch
*
h
*
w
)
gram
=
features
.
bmm
(
features_t
)
/
(
ch
*
h
*
w
)
return
gram
return
gram
def
npmax
(
array
:
np
.
ndarray
):
"""Get max value and index."""
arrayindex
=
array
.
argmax
(
1
)
arrayvalue
=
array
.
max
(
1
)
i
=
arrayvalue
.
argmax
()
j
=
arrayindex
[
i
]
return
i
,
j
paddlehub/process/transforms.py
浏览文件 @
38d6c4c0
...
@@ -13,15 +13,25 @@
...
@@ -13,15 +13,25 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
os
import
math
import
random
import
random
import
copy
from
typing
import
Callable
from
collections
import
OrderedDict
from
collections
import
OrderedDict
import
cv2
import
cv2
import
numpy
as
np
import
numpy
as
np
from
PIL
import
Image
import
matplotlib
from
PIL
import
Image
,
ImageEnhance
from
matplotlib
import
pyplot
as
plt
from
matplotlib.figure
import
Figure
from
scipy.ndimage.filters
import
gaussian_filter
from
matplotlib.backends.backend_agg
import
FigureCanvasAgg
as
FigureCanvas
from
paddlehub.process.functional
import
*
from
paddlehub.process.functional
import
*
matplotlib
.
use
(
'Agg'
)
class
Compose
:
class
Compose
:
def
__init__
(
self
,
transforms
,
to_rgb
=
True
,
stay_rgb
=
False
,
is_permute
=
True
):
def
__init__
(
self
,
transforms
,
to_rgb
=
True
,
stay_rgb
=
False
,
is_permute
=
True
):
...
@@ -763,3 +773,415 @@ class SetType:
...
@@ -763,3 +773,415 @@ class SetType:
def
__call__
(
self
,
img
:
np
.
ndarray
):
def
__call__
(
self
,
img
:
np
.
ndarray
):
img
=
img
.
astype
(
self
.
type
)
img
=
img
.
astype
(
self
.
type
)
return
img
return
img
class
ResizeScaling
:
"""Resize images by scaling method.
Args:
target(int): Target image size.
interp(Callable): Interpolation method.
"""
def
__init__
(
self
,
target
:
int
=
368
,
interp
:
Callable
=
cv2
.
INTER_CUBIC
):
self
.
target
=
target
self
.
interp
=
interp
def
__call__
(
self
,
img
,
scale_search
):
scale
=
scale_search
*
self
.
target
/
img
.
shape
[
0
]
resize_img
=
cv2
.
resize
(
img
,
(
0
,
0
),
fx
=
scale
,
fy
=
scale
,
interpolation
=
self
.
interp
)
return
resize_img
class
PadDownRight
:
"""Get padding images.
Args:
stride(int): Stride for calculate pad value for edges.
padValue(int): Initialization for new area.
"""
def
__init__
(
self
,
stride
:
int
=
8
,
padValue
:
int
=
128
):
self
.
stride
=
stride
self
.
padValue
=
padValue
def
__call__
(
self
,
img
:
np
.
ndarray
):
h
,
w
=
img
.
shape
[
0
:
2
]
pad
=
4
*
[
0
]
pad
[
2
]
=
0
if
(
h
%
self
.
stride
==
0
)
else
self
.
stride
-
(
h
%
self
.
stride
)
# down
pad
[
3
]
=
0
if
(
w
%
self
.
stride
==
0
)
else
self
.
stride
-
(
w
%
self
.
stride
)
# right
img_padded
=
img
pad_up
=
np
.
tile
(
img_padded
[
0
:
1
,
:,
:]
*
0
+
self
.
padValue
,
(
pad
[
0
],
1
,
1
))
img_padded
=
np
.
concatenate
((
pad_up
,
img_padded
),
axis
=
0
)
pad_left
=
np
.
tile
(
img_padded
[:,
0
:
1
,
:]
*
0
+
self
.
padValue
,
(
1
,
pad
[
1
],
1
))
img_padded
=
np
.
concatenate
((
pad_left
,
img_padded
),
axis
=
1
)
pad_down
=
np
.
tile
(
img_padded
[
-
2
:
-
1
,
:,
:]
*
0
+
self
.
padValue
,
(
pad
[
2
],
1
,
1
))
img_padded
=
np
.
concatenate
((
img_padded
,
pad_down
),
axis
=
0
)
pad_right
=
np
.
tile
(
img_padded
[:,
-
2
:
-
1
,
:]
*
0
+
self
.
padValue
,
(
1
,
pad
[
3
],
1
))
img_padded
=
np
.
concatenate
((
img_padded
,
pad_right
),
axis
=
1
)
return
img_padded
,
pad
class
RemovePadding
:
"""Remove the padding values.
Args:
stride(int): Scales for resizing the images.
"""
def
__init__
(
self
,
stride
:
int
=
8
):
self
.
stride
=
stride
def
__call__
(
self
,
data
:
np
.
ndarray
,
imageToTest_padded
:
np
.
ndarray
,
oriImg
:
np
.
ndarray
,
pad
:
list
):
heatmap
=
np
.
transpose
(
np
.
squeeze
(
data
),
(
1
,
2
,
0
))
heatmap
=
cv2
.
resize
(
heatmap
,
(
0
,
0
),
fx
=
self
.
stride
,
fy
=
self
.
stride
,
interpolation
=
cv2
.
INTER_CUBIC
)
heatmap
=
heatmap
[:
imageToTest_padded
.
shape
[
0
]
-
pad
[
2
],
:
imageToTest_padded
.
shape
[
1
]
-
pad
[
3
],
:]
heatmap
=
cv2
.
resize
(
heatmap
,
(
oriImg
.
shape
[
1
],
oriImg
.
shape
[
0
]),
interpolation
=
cv2
.
INTER_CUBIC
)
return
heatmap
class
GetPeak
:
"""
Get peak values and coordinate from input.
Args:
thresh(float): Threshold value for selecting peak value, default is 0.1.
"""
def
__init__
(
self
,
thresh
=
0.1
):
self
.
thresh
=
thresh
def
__call__
(
self
,
heatmap
:
np
.
ndarray
):
all_peaks
=
[]
peak_counter
=
0
for
part
in
range
(
18
):
map_ori
=
heatmap
[:,
:,
part
]
one_heatmap
=
gaussian_filter
(
map_ori
,
sigma
=
3
)
map_left
=
np
.
zeros
(
one_heatmap
.
shape
)
map_left
[
1
:,
:]
=
one_heatmap
[:
-
1
,
:]
map_right
=
np
.
zeros
(
one_heatmap
.
shape
)
map_right
[:
-
1
,
:]
=
one_heatmap
[
1
:,
:]
map_up
=
np
.
zeros
(
one_heatmap
.
shape
)
map_up
[:,
1
:]
=
one_heatmap
[:,
:
-
1
]
map_down
=
np
.
zeros
(
one_heatmap
.
shape
)
map_down
[:,
:
-
1
]
=
one_heatmap
[:,
1
:]
peaks_binary
=
np
.
logical_and
.
reduce
(
(
one_heatmap
>=
map_left
,
one_heatmap
>=
map_right
,
one_heatmap
>=
map_up
,
one_heatmap
>=
map_down
,
one_heatmap
>
self
.
thresh
))
peaks
=
list
(
zip
(
np
.
nonzero
(
peaks_binary
)[
1
],
np
.
nonzero
(
peaks_binary
)[
0
]))
# note reverse
peaks_with_score
=
[
x
+
(
map_ori
[
x
[
1
],
x
[
0
]],
)
for
x
in
peaks
]
peak_id
=
range
(
peak_counter
,
peak_counter
+
len
(
peaks
))
peaks_with_score_and_id
=
[
peaks_with_score
[
i
]
+
(
peak_id
[
i
],
)
for
i
in
range
(
len
(
peak_id
))]
all_peaks
.
append
(
peaks_with_score_and_id
)
peak_counter
+=
len
(
peaks
)
return
all_peaks
class
CalculateVector
:
"""
Vector decomposition and normalization, refer Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
for more details.
Args:
thresh(float): Threshold value for selecting candidate vector, default is 0.05.
"""
def
__init__
(
self
,
thresh
:
float
=
0.05
):
self
.
thresh
=
thresh
def
__call__
(
self
,
candA
:
list
,
candB
:
list
,
nA
:
int
,
nB
:
int
,
score_mid
:
np
.
ndarray
,
oriImg
:
np
.
ndarray
):
connection_candidate
=
[]
for
i
in
range
(
nA
):
for
j
in
range
(
nB
):
vec
=
np
.
subtract
(
candB
[
j
][:
2
],
candA
[
i
][:
2
])
norm
=
math
.
sqrt
(
vec
[
0
]
*
vec
[
0
]
+
vec
[
1
]
*
vec
[
1
])
+
1e-5
vec
=
np
.
divide
(
vec
,
norm
)
startend
=
list
(
zip
(
np
.
linspace
(
candA
[
i
][
0
],
candB
[
j
][
0
],
num
=
10
),
\
np
.
linspace
(
candA
[
i
][
1
],
candB
[
j
][
1
],
num
=
10
)))
vec_x
=
np
.
array
([
score_mid
[
int
(
round
(
startend
[
I
][
1
])),
int
(
round
(
startend
[
I
][
0
])),
0
]
\
for
I
in
range
(
len
(
startend
))])
vec_y
=
np
.
array
([
score_mid
[
int
(
round
(
startend
[
I
][
1
])),
int
(
round
(
startend
[
I
][
0
])),
1
]
\
for
I
in
range
(
len
(
startend
))])
score_midpts
=
np
.
multiply
(
vec_x
,
vec
[
0
])
+
np
.
multiply
(
vec_y
,
vec
[
1
])
score_with_dist_prior
=
sum
(
score_midpts
)
/
len
(
score_midpts
)
+
min
(
0.5
*
oriImg
.
shape
[
0
]
/
norm
-
1
,
0
)
criterion1
=
len
(
np
.
nonzero
(
score_midpts
>
self
.
thresh
)[
0
])
>
0.8
*
len
(
score_midpts
)
criterion2
=
score_with_dist_prior
>
0
if
criterion1
and
criterion2
:
connection_candidate
.
append
(
[
i
,
j
,
score_with_dist_prior
,
score_with_dist_prior
+
candA
[
i
][
2
]
+
candB
[
j
][
2
]])
return
connection_candidate
class
Connection
:
"""Get connection for selected estimation points.
Args:
mapIdx(list): Part Affinity Fields map index, default is None.
limbSeq(list): Peak candidate map index, default is None.
"""
def
__init__
(
self
,
mapIdx
:
list
=
None
,
limbSeq
:
list
=
None
):
if
mapIdx
and
limbSeq
:
self
.
mapIdx
=
mapIdx
self
.
limbSeq
=
limbSeq
else
:
self
.
mapIdx
=
[[
31
,
32
],
[
39
,
40
],
[
33
,
34
],
[
35
,
36
],
[
41
,
42
],
[
43
,
44
],
[
19
,
20
],
[
21
,
22
],
\
[
23
,
24
],
[
25
,
26
],
[
27
,
28
],
[
29
,
30
],
[
47
,
48
],
[
49
,
50
],
[
53
,
54
],
[
51
,
52
],
\
[
55
,
56
],
[
37
,
38
],
[
45
,
46
]]
self
.
limbSeq
=
[[
2
,
3
],
[
2
,
6
],
[
3
,
4
],
[
4
,
5
],
[
6
,
7
],
[
7
,
8
],
[
2
,
9
],
[
9
,
10
],
\
[
10
,
11
],
[
2
,
12
],
[
12
,
13
],
[
13
,
14
],
[
2
,
1
],
[
1
,
15
],
[
15
,
17
],
\
[
1
,
16
],
[
16
,
18
],
[
3
,
17
],
[
6
,
18
]]
self
.
caculate_vector
=
CalculateVector
()
def
__call__
(
self
,
all_peaks
:
list
,
paf_avg
:
np
.
ndarray
,
orgimg
:
np
.
ndarray
):
connection_all
=
[]
special_k
=
[]
for
k
in
range
(
len
(
self
.
mapIdx
)):
score_mid
=
paf_avg
[:,
:,
[
x
-
19
for
x
in
self
.
mapIdx
[
k
]]]
candA
=
all_peaks
[
self
.
limbSeq
[
k
][
0
]
-
1
]
candB
=
all_peaks
[
self
.
limbSeq
[
k
][
1
]
-
1
]
nA
=
len
(
candA
)
nB
=
len
(
candB
)
if
nA
!=
0
and
nB
!=
0
:
connection_candidate
=
self
.
caculate_vector
(
candA
,
candB
,
nA
,
nB
,
score_mid
,
orgimg
)
connection_candidate
=
sorted
(
connection_candidate
,
key
=
lambda
x
:
x
[
2
],
reverse
=
True
)
connection
=
np
.
zeros
((
0
,
5
))
for
c
in
range
(
len
(
connection_candidate
)):
i
,
j
,
s
=
connection_candidate
[
c
][
0
:
3
]
if
i
not
in
connection
[:,
3
]
and
j
not
in
connection
[:,
4
]:
connection
=
np
.
vstack
([
connection
,
[
candA
[
i
][
3
],
candB
[
j
][
3
],
s
,
i
,
j
]])
if
len
(
connection
)
>=
min
(
nA
,
nB
):
break
connection_all
.
append
(
connection
)
else
:
special_k
.
append
(
k
)
connection_all
.
append
([])
return
connection_all
,
special_k
class
Candidate
:
"""Select candidate for body pose estimation.
Args:
mapIdx(list): Part Affinity Fields map index, default is None.
limbSeq(list): Peak candidate map index, default is None.
"""
def
__init__
(
self
,
mapIdx
:
list
=
None
,
limbSeq
:
list
=
None
):
if
mapIdx
and
limbSeq
:
self
.
mapIdx
=
mapIdx
self
.
limbSeq
=
limbSeq
else
:
self
.
mapIdx
=
[[
31
,
32
],
[
39
,
40
],
[
33
,
34
],
[
35
,
36
],
[
41
,
42
],
[
43
,
44
],
[
19
,
20
],
[
21
,
22
],
\
[
23
,
24
],
[
25
,
26
],
[
27
,
28
],
[
29
,
30
],
[
47
,
48
],
[
49
,
50
],
[
53
,
54
],
[
51
,
52
],
\
[
55
,
56
],
[
37
,
38
],
[
45
,
46
]]
self
.
limbSeq
=
[[
2
,
3
],
[
2
,
6
],
[
3
,
4
],
[
4
,
5
],
[
6
,
7
],
[
7
,
8
],
[
2
,
9
],
[
9
,
10
],
\
[
10
,
11
],
[
2
,
12
],
[
12
,
13
],
[
13
,
14
],
[
2
,
1
],
[
1
,
15
],
[
15
,
17
],
\
[
1
,
16
],
[
16
,
18
],
[
3
,
17
],
[
6
,
18
]]
def
__call__
(
self
,
all_peaks
:
list
,
connection_all
:
list
,
special_k
:
list
):
subset
=
-
1
*
np
.
ones
((
0
,
20
))
candidate
=
np
.
array
([
item
for
sublist
in
all_peaks
for
item
in
sublist
])
for
k
in
range
(
len
(
self
.
mapIdx
)):
if
k
not
in
special_k
:
partAs
=
connection_all
[
k
][:,
0
]
partBs
=
connection_all
[
k
][:,
1
]
indexA
,
indexB
=
np
.
array
(
self
.
limbSeq
[
k
])
-
1
for
i
in
range
(
len
(
connection_all
[
k
])):
# = 1:size(temp,1)
found
=
0
subset_idx
=
[
-
1
,
-
1
]
for
j
in
range
(
len
(
subset
)):
# 1:size(subset,1):
if
subset
[
j
][
indexA
]
==
partAs
[
i
]
or
subset
[
j
][
indexB
]
==
partBs
[
i
]:
subset_idx
[
found
]
=
j
found
+=
1
if
found
==
1
:
j
=
subset_idx
[
0
]
if
subset
[
j
][
indexB
]
!=
partBs
[
i
]:
subset
[
j
][
indexB
]
=
partBs
[
i
]
subset
[
j
][
-
1
]
+=
1
subset
[
j
][
-
2
]
+=
candidate
[
partBs
[
i
].
astype
(
int
),
2
]
+
connection_all
[
k
][
i
][
2
]
elif
found
==
2
:
# if found 2 and disjoint, merge them
j1
,
j2
=
subset_idx
membership
=
((
subset
[
j1
]
>=
0
).
astype
(
int
)
+
(
subset
[
j2
]
>=
0
).
astype
(
int
))[:
-
2
]
if
len
(
np
.
nonzero
(
membership
==
2
)[
0
])
==
0
:
# merge
subset
[
j1
][:
-
2
]
+=
(
subset
[
j2
][:
-
2
]
+
1
)
subset
[
j1
][
-
2
:]
+=
subset
[
j2
][
-
2
:]
subset
[
j1
][
-
2
]
+=
connection_all
[
k
][
i
][
2
]
subset
=
np
.
delete
(
subset
,
j2
,
0
)
else
:
# as like found == 1
subset
[
j1
][
indexB
]
=
partBs
[
i
]
subset
[
j1
][
-
1
]
+=
1
subset
[
j1
][
-
2
]
+=
candidate
[
partBs
[
i
].
astype
(
int
),
2
]
+
connection_all
[
k
][
i
][
2
]
# if find no partA in the subset, create a new subset
elif
not
found
and
k
<
17
:
row
=
-
1
*
np
.
ones
(
20
)
row
[
indexA
]
=
partAs
[
i
]
row
[
indexB
]
=
partBs
[
i
]
row
[
-
1
]
=
2
row
[
-
2
]
=
sum
(
candidate
[
connection_all
[
k
][
i
,
:
2
].
astype
(
int
),
2
])
+
connection_all
[
k
][
i
][
2
]
subset
=
np
.
vstack
([
subset
,
row
])
# delete some rows of subset which has few parts occur
deleteIdx
=
[]
for
i
in
range
(
len
(
subset
)):
if
subset
[
i
][
-
1
]
<
4
or
subset
[
i
][
-
2
]
/
subset
[
i
][
-
1
]
<
0.4
:
deleteIdx
.
append
(
i
)
subset
=
np
.
delete
(
subset
,
deleteIdx
,
axis
=
0
)
return
candidate
,
subset
class
DrawPose
:
"""
Draw Pose estimation results on canvas.
Args:
stickwidth(int): Angle value to draw approximate ellipse curve, default is 4.
"""
def
__init__
(
self
,
stickwidth
:
int
=
4
):
self
.
stickwidth
=
stickwidth
self
.
limbSeq
=
[[
2
,
3
],
[
2
,
6
],
[
3
,
4
],
[
4
,
5
],
[
6
,
7
],
[
7
,
8
],
[
2
,
9
],
[
9
,
10
],
[
10
,
11
],
[
2
,
12
],
[
12
,
13
],
[
13
,
14
],
[
2
,
1
],
[
1
,
15
],
[
15
,
17
],
[
1
,
16
],
[
16
,
18
],
[
3
,
17
],
[
6
,
18
]]
self
.
colors
=
[[
255
,
0
,
0
],
[
255
,
85
,
0
],
[
255
,
170
,
0
],
[
255
,
255
,
0
],
[
170
,
255
,
0
],
[
85
,
255
,
0
],
[
0
,
255
,
0
],
[
0
,
255
,
85
],
[
0
,
255
,
170
],
[
0
,
255
,
255
],
[
0
,
170
,
255
],
[
0
,
85
,
255
],
[
0
,
0
,
255
],
[
85
,
0
,
255
],
[
170
,
0
,
255
],
[
255
,
0
,
255
],
[
255
,
0
,
170
],
[
255
,
0
,
85
]]
def
__call__
(
self
,
canvas
:
np
.
ndarray
,
candidate
:
np
.
ndarray
,
subset
:
np
.
ndarray
):
for
i
in
range
(
18
):
for
n
in
range
(
len
(
subset
)):
index
=
int
(
subset
[
n
][
i
])
if
index
==
-
1
:
continue
x
,
y
=
candidate
[
index
][
0
:
2
]
cv2
.
circle
(
canvas
,
(
int
(
x
),
int
(
y
)),
4
,
self
.
colors
[
i
],
thickness
=-
1
)
for
i
in
range
(
17
):
for
n
in
range
(
len
(
subset
)):
index
=
subset
[
n
][
np
.
array
(
self
.
limbSeq
[
i
])
-
1
]
if
-
1
in
index
:
continue
cur_canvas
=
canvas
.
copy
()
Y
=
candidate
[
index
.
astype
(
int
),
0
]
X
=
candidate
[
index
.
astype
(
int
),
1
]
mX
=
np
.
mean
(
X
)
mY
=
np
.
mean
(
Y
)
length
=
((
X
[
0
]
-
X
[
1
])
**
2
+
(
Y
[
0
]
-
Y
[
1
])
**
2
)
**
0.5
angle
=
math
.
degrees
(
math
.
atan2
(
X
[
0
]
-
X
[
1
],
Y
[
0
]
-
Y
[
1
]))
polygon
=
cv2
.
ellipse2Poly
((
int
(
mY
),
int
(
mX
)),
(
int
(
length
/
2
),
self
.
stickwidth
),
int
(
angle
),
0
,
360
,
1
)
cv2
.
fillConvexPoly
(
cur_canvas
,
polygon
,
self
.
colors
[
i
])
canvas
=
cv2
.
addWeighted
(
canvas
,
0.4
,
cur_canvas
,
0.6
,
0
)
return
canvas
class
DrawHandPose
:
"""
Draw hand pose estimation results on canvas.
Args:
show_number(bool): Whether to show estimation ids in canvas, default is False.
"""
def
__init__
(
self
,
show_number
:
bool
=
False
):
self
.
edges
=
[[
0
,
1
],
[
1
,
2
],
[
2
,
3
],
[
3
,
4
],
[
0
,
5
],
[
5
,
6
],
[
6
,
7
],
[
7
,
8
],
[
0
,
9
],
[
9
,
10
],
\
[
10
,
11
],
[
11
,
12
],
[
0
,
13
],
[
13
,
14
],
[
14
,
15
],
[
15
,
16
],
[
0
,
17
],
[
17
,
18
],
[
18
,
19
],
[
19
,
20
]]
self
.
show_number
=
show_number
def
__call__
(
self
,
canvas
:
np
.
ndarray
,
all_hand_peaks
:
list
):
fig
=
Figure
(
figsize
=
plt
.
figaspect
(
canvas
))
fig
.
subplots_adjust
(
0
,
0
,
1
,
1
)
fig
.
subplots_adjust
(
bottom
=
0
,
top
=
1
,
left
=
0
,
right
=
1
)
bg
=
FigureCanvas
(
fig
)
ax
=
fig
.
subplots
()
ax
.
axis
(
'off'
)
ax
.
imshow
(
canvas
)
width
,
height
=
ax
.
figure
.
get_size_inches
()
*
ax
.
figure
.
get_dpi
()
for
peaks
in
all_hand_peaks
:
for
ie
,
e
in
enumerate
(
self
.
edges
):
if
np
.
sum
(
np
.
all
(
peaks
[
e
],
axis
=
1
)
==
0
)
==
0
:
x1
,
y1
=
peaks
[
e
[
0
]]
x2
,
y2
=
peaks
[
e
[
1
]]
ax
.
plot
([
x1
,
x2
],
[
y1
,
y2
],
color
=
matplotlib
.
colors
.
hsv_to_rgb
([
ie
/
float
(
len
(
self
.
edges
)),
1.0
,
1.0
]))
for
i
,
keyponit
in
enumerate
(
peaks
):
x
,
y
=
keyponit
ax
.
plot
(
x
,
y
,
'r.'
)
if
self
.
show_number
:
ax
.
text
(
x
,
y
,
str
(
i
))
bg
.
draw
()
canvas
=
np
.
frombuffer
(
bg
.
tostring_rgb
(),
dtype
=
'uint8'
).
reshape
(
int
(
height
),
int
(
width
),
3
)
return
canvas
class
HandDetect
:
"""Detect hand pose information from body pose estimation result.
Args:
ratioWristElbow(float): Ratio to adjust the wrist center, ,default is 0.33.
"""
def
__init__
(
self
,
ratioWristElbow
:
float
=
0.33
):
self
.
ratioWristElbow
=
ratioWristElbow
def
__call__
(
self
,
candidate
:
np
.
ndarray
,
subset
:
np
.
ndarray
,
oriImg
:
np
.
ndarray
):
detect_result
=
[]
image_height
,
image_width
=
oriImg
.
shape
[
0
:
2
]
for
person
in
subset
.
astype
(
int
):
has_left
=
np
.
sum
(
person
[[
5
,
6
,
7
]]
==
-
1
)
==
0
has_right
=
np
.
sum
(
person
[[
2
,
3
,
4
]]
==
-
1
)
==
0
if
not
(
has_left
or
has_right
):
continue
hands
=
[]
# left hand
if
has_left
:
left_shoulder_index
,
left_elbow_index
,
left_wrist_index
=
person
[[
5
,
6
,
7
]]
x1
,
y1
=
candidate
[
left_shoulder_index
][:
2
]
x2
,
y2
=
candidate
[
left_elbow_index
][:
2
]
x3
,
y3
=
candidate
[
left_wrist_index
][:
2
]
hands
.
append
([
x1
,
y1
,
x2
,
y2
,
x3
,
y3
,
True
])
# right hand
if
has_right
:
right_shoulder_index
,
right_elbow_index
,
right_wrist_index
=
person
[[
2
,
3
,
4
]]
x1
,
y1
=
candidate
[
right_shoulder_index
][:
2
]
x2
,
y2
=
candidate
[
right_elbow_index
][:
2
]
x3
,
y3
=
candidate
[
right_wrist_index
][:
2
]
hands
.
append
([
x1
,
y1
,
x2
,
y2
,
x3
,
y3
,
False
])
for
x1
,
y1
,
x2
,
y2
,
x3
,
y3
,
is_left
in
hands
:
x
=
x3
+
self
.
ratioWristElbow
*
(
x3
-
x2
)
y
=
y3
+
self
.
ratioWristElbow
*
(
y3
-
y2
)
distanceWristElbow
=
math
.
sqrt
((
x3
-
x2
)
**
2
+
(
y3
-
y2
)
**
2
)
distanceElbowShoulder
=
math
.
sqrt
((
x2
-
x1
)
**
2
+
(
y2
-
y1
)
**
2
)
width
=
1.5
*
max
(
distanceWristElbow
,
0.9
*
distanceElbowShoulder
)
x
-=
width
/
2
y
-=
width
/
2
if
x
<
0
:
x
=
0
if
y
<
0
:
y
=
0
width1
=
width
width2
=
width
if
x
+
width
>
image_width
:
width1
=
image_width
-
x
if
y
+
width
>
image_height
:
width2
=
image_height
-
y
width
=
min
(
width1
,
width2
)
if
width
>=
20
:
detect_result
.
append
([
int
(
x
),
int
(
y
),
int
(
width
),
is_left
])
return
detect_result
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录