Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
350407c7
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 2 年 前同步成功
通知
285
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
350407c7
编写于
11月 04, 2022
作者:
jm_12138
提交者:
GitHub
11月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update resnet50_vd_wildanimals (#2068)
* updete resnet50_vd_wildanimals * update
上级
ee36bfab
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
114 addition
and
296 deletion
+114
-296
modules/image/classification/resnet50_vd_wildanimals/README.md
...es/image/classification/resnet50_vd_wildanimals/README.md
+6
-1
modules/image/classification/resnet50_vd_wildanimals/README_en.md
...image/classification/resnet50_vd_wildanimals/README_en.md
+6
-1
modules/image/classification/resnet50_vd_wildanimals/data_feed.py
...image/classification/resnet50_vd_wildanimals/data_feed.py
+0
-2
modules/image/classification/resnet50_vd_wildanimals/module.py
...es/image/classification/resnet50_vd_wildanimals/module.py
+38
-104
modules/image/classification/resnet50_vd_wildanimals/processor.py
...image/classification/resnet50_vd_wildanimals/processor.py
+1
-3
modules/image/classification/resnet50_vd_wildanimals/resnet_vd.py
...image/classification/resnet50_vd_wildanimals/resnet_vd.py
+0
-185
modules/image/classification/resnet50_vd_wildanimals/test.py
modules/image/classification/resnet50_vd_wildanimals/test.py
+63
-0
未找到文件。
modules/image/classification/resnet50_vd_wildanimals/README.md
浏览文件 @
350407c7
...
@@ -129,6 +129,11 @@
...
@@ -129,6 +129,11 @@
*
1.0.0
*
1.0.0
初始发布
初始发布
*
1.1.0
移除 Fluid API
-
```shell
-
```shell
$ hub install resnet50_vd_wildanimals==1.
0
.0
$ hub install resnet50_vd_wildanimals==1.
1
.0
```
```
modules/image/classification/resnet50_vd_wildanimals/README_en.md
浏览文件 @
350407c7
...
@@ -129,6 +129,11 @@
...
@@ -129,6 +129,11 @@
*
1.0.0
*
1.0.0
First release
First release
*
1.1.0
Remove Fluid API
-
```shell
-
```shell
$ hub install resnet50_vd_wildanimals==1.
0
.0
$ hub install resnet50_vd_wildanimals==1.
1
.0
```
```
modules/image/classification/resnet50_vd_wildanimals/data_feed.py
浏览文件 @
350407c7
# coding=utf-8
import
os
import
os
import
time
import
time
from
collections
import
OrderedDict
from
collections
import
OrderedDict
import
cv2
import
numpy
as
np
import
numpy
as
np
from
PIL
import
Image
from
PIL
import
Image
...
...
modules/image/classification/resnet50_vd_wildanimals/module.py
浏览文件 @
350407c7
...
@@ -2,20 +2,20 @@
...
@@ -2,20 +2,20 @@
from
__future__
import
absolute_import
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
division
import
ast
import
argparse
import
argparse
import
ast
import
os
import
os
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.inference
import
Config
import
paddlehub
as
hub
from
paddle.inference
import
create_predictor
from
paddle.fluid.core
import
PaddleTensor
,
AnalysisConfig
,
create_paddle_predictor
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
from
paddlehub.common.paddle_helper
import
add_vars_prefix
from
resnet50_vd_wildanimals.processor
import
postprocess
,
base64_to_cv2
from
.data_feed
import
reader
from
resnet50_vd_wildanimals.data_feed
import
reader
from
.processor
import
base64_to_cv2
from
resnet50_vd_wildanimals.resnet_vd
import
ResNet50_vd
from
.processor
import
postprocess
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.module
import
runnable
from
paddlehub.module.module
import
serving
@
moduleinfo
(
@
moduleinfo
(
...
@@ -25,10 +25,11 @@ from resnet50_vd_wildanimals.resnet_vd import ResNet50_vd
...
@@ -25,10 +25,11 @@ from resnet50_vd_wildanimals.resnet_vd import ResNet50_vd
author_email
=
""
,
author_email
=
""
,
summary
=
summary
=
"ResNet50vd is a image classfication model, this module is trained with IFAW's self-built wild animals dataset."
,
"ResNet50vd is a image classfication model, this module is trained with IFAW's self-built wild animals dataset."
,
version
=
"1.0.0"
)
version
=
"1.1.0"
)
class
ResNet50vdWildAnimals
(
hub
.
Module
):
class
ResNet50vdWildAnimals
:
def
_initialize
(
self
):
self
.
default_pretrained_model_path
=
os
.
path
.
join
(
self
.
directory
,
"model"
)
def
__init__
(
self
):
self
.
default_pretrained_model_path
=
os
.
path
.
join
(
self
.
directory
,
"model"
,
"model"
)
label_file
=
os
.
path
.
join
(
self
.
directory
,
"label_list.txt"
)
label_file
=
os
.
path
.
join
(
self
.
directory
,
"label_list.txt"
)
with
open
(
label_file
,
'r'
,
encoding
=
'utf-8'
)
as
file
:
with
open
(
label_file
,
'r'
,
encoding
=
'utf-8'
)
as
file
:
self
.
label_list
=
file
.
read
().
split
(
"
\n
"
)[:
-
1
]
self
.
label_list
=
file
.
read
().
split
(
"
\n
"
)[:
-
1
]
...
@@ -52,10 +53,12 @@ class ResNet50vdWildAnimals(hub.Module):
...
@@ -52,10 +53,12 @@ class ResNet50vdWildAnimals(hub.Module):
"""
"""
predictor config setting.
predictor config setting.
"""
"""
cpu_config
=
AnalysisConfig
(
self
.
default_pretrained_model_path
)
model
=
self
.
default_pretrained_model_path
+
'.pdmodel'
params
=
self
.
default_pretrained_model_path
+
'.pdiparams'
cpu_config
=
Config
(
model
,
params
)
cpu_config
.
disable_glog_info
()
cpu_config
.
disable_glog_info
()
cpu_config
.
disable_gpu
()
cpu_config
.
disable_gpu
()
self
.
cpu_predictor
=
create_p
addle_p
redictor
(
cpu_config
)
self
.
cpu_predictor
=
create_predictor
(
cpu_config
)
try
:
try
:
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
...
@@ -64,58 +67,10 @@ class ResNet50vdWildAnimals(hub.Module):
...
@@ -64,58 +67,10 @@ class ResNet50vdWildAnimals(hub.Module):
except
:
except
:
use_gpu
=
False
use_gpu
=
False
if
use_gpu
:
if
use_gpu
:
gpu_config
=
AnalysisConfig
(
self
.
default_pretrained_model_path
)
gpu_config
=
Config
(
model
,
params
)
gpu_config
.
disable_glog_info
()
gpu_config
.
disable_glog_info
()
gpu_config
.
enable_use_gpu
(
memory_pool_init_size_mb
=
1000
,
device_id
=
0
)
gpu_config
.
enable_use_gpu
(
memory_pool_init_size_mb
=
1000
,
device_id
=
0
)
self
.
gpu_predictor
=
create_paddle_predictor
(
gpu_config
)
self
.
gpu_predictor
=
create_predictor
(
gpu_config
)
def
context
(
self
,
trainable
=
True
,
pretrained
=
True
):
"""context for transfer learning.
Args:
trainable (bool): Set parameters in program to be trainable.
pretrained (bool) : Whether to load pretrained model.
Returns:
inputs (dict): key is 'image', corresponding vaule is image tensor.
outputs (dict): key is :
'classification', corresponding value is the result of classification.
'feature_map', corresponding value is the result of the layer before the fully connected layer.
context_prog (fluid.Program): program for transfer learning.
"""
context_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
context_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
224
,
224
],
dtype
=
"float32"
)
resnet_vd
=
ResNet50_vd
()
output
,
feature_map
=
resnet_vd
.
net
(
input
=
image
,
class_dim
=
len
(
self
.
label_list
))
name_prefix
=
'@HUB_{}@'
.
format
(
self
.
name
)
inputs
=
{
'image'
:
name_prefix
+
image
.
name
}
outputs
=
{
'classification'
:
name_prefix
+
output
.
name
,
'feature_map'
:
name_prefix
+
feature_map
.
name
}
add_vars_prefix
(
context_prog
,
name_prefix
)
add_vars_prefix
(
startup_prog
,
name_prefix
)
global_vars
=
context_prog
.
global_block
().
vars
inputs
=
{
key
:
global_vars
[
value
]
for
key
,
value
in
inputs
.
items
()}
outputs
=
{
key
:
global_vars
[
value
]
for
key
,
value
in
outputs
.
items
()}
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# pretrained
if
pretrained
:
def
_if_exist
(
var
):
b
=
os
.
path
.
exists
(
os
.
path
.
join
(
self
.
default_pretrained_model_path
,
var
.
name
))
return
b
fluid
.
io
.
load_vars
(
exe
,
self
.
default_pretrained_model_path
,
context_prog
,
predicate
=
_if_exist
)
else
:
exe
.
run
(
startup_prog
)
# trainable
for
param
in
context_prog
.
global_block
().
iter_parameters
():
param
.
trainable
=
trainable
return
inputs
,
outputs
,
context_prog
def
classification
(
self
,
images
=
None
,
paths
=
None
,
batch_size
=
1
,
use_gpu
=
False
,
top_k
=
1
):
def
classification
(
self
,
images
=
None
,
paths
=
None
,
batch_size
=
1
,
use_gpu
=
False
,
top_k
=
1
):
"""
"""
...
@@ -131,15 +86,6 @@ class ResNet50vdWildAnimals(hub.Module):
...
@@ -131,15 +86,6 @@ class ResNet50vdWildAnimals(hub.Module):
Returns:
Returns:
res (list[dict]): The classfication results.
res (list[dict]): The classfication results.
"""
"""
if
use_gpu
:
try
:
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
int
(
_places
[
0
])
except
:
raise
RuntimeError
(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data
=
list
()
all_data
=
list
()
for
yield_data
in
reader
(
images
,
paths
):
for
yield_data
in
reader
(
images
,
paths
):
all_data
.
append
(
yield_data
)
all_data
.
append
(
yield_data
)
...
@@ -158,32 +104,19 @@ class ResNet50vdWildAnimals(hub.Module):
...
@@ -158,32 +104,19 @@ class ResNet50vdWildAnimals(hub.Module):
pass
pass
# feed batch image
# feed batch image
batch_image
=
np
.
array
([
data
[
'image'
]
for
data
in
batch_data
])
batch_image
=
np
.
array
([
data
[
'image'
]
for
data
in
batch_data
])
batch_image
=
PaddleTensor
(
batch_image
.
copy
())
predictor_output
=
self
.
gpu_predictor
.
run
([
batch_image
])
if
use_gpu
else
self
.
cpu_predictor
.
run
(
predictor
=
self
.
gpu_predictor
if
use_gpu
else
self
.
cpu_predictor
[
batch_image
])
input_names
=
predictor
.
get_input_names
()
out
=
postprocess
(
data_out
=
predictor_output
[
0
].
as_ndarray
(),
label_list
=
self
.
label_list
,
top_k
=
top_k
)
input_handle
=
predictor
.
get_input_handle
(
input_names
[
0
])
input_handle
.
copy_from_cpu
(
batch_image
.
copy
())
predictor
.
run
()
output_names
=
predictor
.
get_output_names
()
output_handle
=
predictor
.
get_output_handle
(
output_names
[
0
])
out
=
postprocess
(
data_out
=
output_handle
.
copy_to_cpu
(),
label_list
=
self
.
label_list
,
top_k
=
top_k
)
res
+=
out
res
+=
out
return
res
return
res
def
save_inference_model
(
self
,
dirname
,
model_filename
=
None
,
params_filename
=
None
,
combined
=
True
):
if
combined
:
model_filename
=
"__model__"
if
not
model_filename
else
model_filename
params_filename
=
"__params__"
if
not
params_filename
else
params_filename
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
program
,
feeded_var_names
,
target_vars
=
fluid
.
io
.
load_inference_model
(
dirname
=
self
.
default_pretrained_model_path
,
executor
=
exe
)
fluid
.
io
.
save_inference_model
(
dirname
=
dirname
,
main_program
=
program
,
executor
=
exe
,
feeded_var_names
=
feeded_var_names
,
target_vars
=
target_vars
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
@
serving
@
serving
def
serving_method
(
self
,
images
,
**
kwargs
):
def
serving_method
(
self
,
images
,
**
kwargs
):
"""
"""
...
@@ -198,11 +131,10 @@ class ResNet50vdWildAnimals(hub.Module):
...
@@ -198,11 +131,10 @@ class ResNet50vdWildAnimals(hub.Module):
"""
"""
Run as a command.
Run as a command.
"""
"""
self
.
parser
=
argparse
.
ArgumentParser
(
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
usage
=
'%(prog)s'
,
add_help
=
True
)
add_help
=
True
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
title
=
"Config options"
,
description
=
"Run configuration for controlling module behavior, not required."
)
title
=
"Config options"
,
description
=
"Run configuration for controlling module behavior, not required."
)
...
@@ -216,8 +148,10 @@ class ResNet50vdWildAnimals(hub.Module):
...
@@ -216,8 +148,10 @@ class ResNet50vdWildAnimals(hub.Module):
"""
"""
Add the command config options.
Add the command config options.
"""
"""
self
.
arg_config_group
.
add_argument
(
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether use GPU or not."
)
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether use GPU or not."
)
self
.
arg_config_group
.
add_argument
(
'--batch_size'
,
type
=
ast
.
literal_eval
,
default
=
1
,
help
=
"batch size."
)
self
.
arg_config_group
.
add_argument
(
'--batch_size'
,
type
=
ast
.
literal_eval
,
default
=
1
,
help
=
"batch size."
)
self
.
arg_config_group
.
add_argument
(
'--top_k'
,
type
=
ast
.
literal_eval
,
default
=
1
,
help
=
"Return top k results."
)
self
.
arg_config_group
.
add_argument
(
'--top_k'
,
type
=
ast
.
literal_eval
,
default
=
1
,
help
=
"Return top k results."
)
...
...
modules/image/classification/resnet50_vd_wildanimals/processor.py
浏览文件 @
350407c7
...
@@ -4,9 +4,8 @@ from __future__ import division
...
@@ -4,9 +4,8 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
base64
import
base64
import
cv2
import
os
import
cv2
import
numpy
as
np
import
numpy
as
np
...
@@ -18,7 +17,6 @@ def base64_to_cv2(b64str):
...
@@ -18,7 +17,6 @@ def base64_to_cv2(b64str):
def
softmax
(
x
):
def
softmax
(
x
):
orig_shape
=
x
.
shape
if
len
(
x
.
shape
)
>
1
:
if
len
(
x
.
shape
)
>
1
:
tmp
=
np
.
max
(
x
,
axis
=
1
)
tmp
=
np
.
max
(
x
,
axis
=
1
)
x
-=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
x
-=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
...
...
modules/image/classification/resnet50_vd_wildanimals/resnet_vd.py
已删除
100755 → 0
浏览文件 @
ee36bfab
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
"ResNet"
,
"ResNet50_vd"
,
"ResNet101_vd"
,
"ResNet152_vd"
,
"ResNet200_vd"
]
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
ResNet
():
def
__init__
(
self
,
layers
=
50
,
is_3x3
=
False
):
self
.
params
=
train_parameters
self
.
layers
=
layers
self
.
is_3x3
=
is_3x3
def
net
(
self
,
input
,
class_dim
=
1000
):
is_3x3
=
self
.
is_3x3
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
,
200
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
elif
layers
==
200
:
depth
=
[
3
,
12
,
48
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
if
is_3x3
==
False
:
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
else
:
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
'conv1_1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'conv1_2'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'conv1_3'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
,
200
]
and
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
if_first
=
block
==
0
,
name
=
conv_name
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
,
pool
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
conv_bn_layer_new
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
)
conv
=
fluid
.
layers
.
conv2d
(
input
=
pool
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
1
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
,
name
,
if_first
=
False
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
if
if_first
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
name
=
name
)
else
:
return
self
.
conv_bn_layer_new
(
input
,
ch_out
,
1
,
stride
,
name
=
name
)
else
:
return
input
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
,
name
,
if_first
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
,
if_first
=
if_first
,
name
=
name
+
"_branch1"
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
ResNet50_vd
():
model
=
ResNet
(
layers
=
50
,
is_3x3
=
True
)
return
model
def
ResNet101_vd
():
model
=
ResNet
(
layers
=
101
,
is_3x3
=
True
)
return
model
def
ResNet152_vd
():
model
=
ResNet
(
layers
=
152
,
is_3x3
=
True
)
return
model
def
ResNet200_vd
():
model
=
ResNet
(
layers
=
200
,
is_3x3
=
True
)
return
model
modules/image/classification/resnet50_vd_wildanimals/test.py
0 → 100644
浏览文件 @
350407c7
import
os
import
shutil
import
unittest
import
cv2
import
requests
import
paddlehub
as
hub
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
class
TestHubModule
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
)
->
None
:
img_url
=
'https://unsplash.com/photos/J33o16cP0SA/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8Mnx8aXZvcnl8ZW58MHx8fHwxNjY1NTUwNjk4&force=true&w=640'
if
not
os
.
path
.
exists
(
'tests'
):
os
.
makedirs
(
'tests'
)
response
=
requests
.
get
(
img_url
)
assert
response
.
status_code
==
200
,
'Network Error.'
with
open
(
'tests/test.jpg'
,
'wb'
)
as
f
:
f
.
write
(
response
.
content
)
cls
.
module
=
hub
.
Module
(
name
=
"resnet50_vd_wildanimals"
)
@
classmethod
def
tearDownClass
(
cls
)
->
None
:
shutil
.
rmtree
(
'tests'
)
shutil
.
rmtree
(
'inference'
)
def
test_classification1
(
self
):
results
=
self
.
module
.
classification
(
paths
=
[
'tests/test.jpg'
])
data
=
results
[
0
]
self
.
assertTrue
(
'象牙'
in
data
)
self
.
assertTrue
(
data
[
'象牙'
]
>
0.2
)
def
test_classification2
(
self
):
results
=
self
.
module
.
classification
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)])
data
=
results
[
0
]
self
.
assertTrue
(
'象牙'
in
data
)
self
.
assertTrue
(
data
[
'象牙'
]
>
0.2
)
def
test_classification3
(
self
):
results
=
self
.
module
.
classification
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)],
use_gpu
=
True
)
data
=
results
[
0
]
self
.
assertTrue
(
'象牙'
in
data
)
self
.
assertTrue
(
data
[
'象牙'
]
>
0.2
)
def
test_classification4
(
self
):
self
.
assertRaises
(
AssertionError
,
self
.
module
.
classification
,
paths
=
[
'no.jpg'
])
def
test_classification5
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
module
.
classification
,
images
=
[
'tests/test.jpg'
])
def
test_save_inference_model
(
self
):
self
.
module
.
save_inference_model
(
'./inference/model'
)
self
.
assertTrue
(
os
.
path
.
exists
(
'./inference/model.pdmodel'
))
self
.
assertTrue
(
os
.
path
.
exists
(
'./inference/model.pdiparams'
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录