提交 304cda75 编写于 作者: S Steffy-zxf

update strategy

上级 4e9a68e6
...@@ -133,39 +133,39 @@ def set_gradual_unfreeze(depth_params_dict, unfreeze_depths): ...@@ -133,39 +133,39 @@ def set_gradual_unfreeze(depth_params_dict, unfreeze_depths):
class DefaultStrategy(object): class DefaultStrategy(object):
def __init__(self, learning_rate=1e-4, optimizer_name="adam"): def __init__(self, learning_rate=1e-4, optimizer_name="adam", **kwargs):
self.learning_rate = learning_rate self.learning_rate = learning_rate
self._optimizer_name = optimizer_name self._optimizer_name = optimizer_name
if self._optimizer_name.lower() == "sgd": if self._optimizer_name.lower() == "sgd":
self.optimizer = fluid.optimizer.SGD( self.optimizer = fluid.optimizer.SGD(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
elif self._optimizer_name.lower() == "adagrad": elif self._optimizer_name.lower() == "adagrad":
self.optimizer = fluid.optimizer.Adagrad( self.optimizer = fluid.optimizer.Adagrad(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
elif self._optimizer_name.lower() == "adamax": elif self._optimizer_name.lower() == "adamax":
self.optimizer = fluid.optimizer.Adamax( self.optimizer = fluid.optimizer.Adamax(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
elif self._optimizer_name.lower() == "decayedadagrad": elif self._optimizer_name.lower() == "decayedadagrad":
self.optimizer = fluid.optimizer.DecayedAdagrad( self.optimizer = fluid.optimizer.DecayedAdagrad(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
elif self._optimizer_name.lower() == "ftrl": elif self._optimizer_name.lower() == "ftrl":
self.optimizer = fluid.optimizer.Ftrl( self.optimizer = fluid.optimizer.Ftrl(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
elif self._optimizer_name.lower() == "larsmomentum": elif self._optimizer_name.lower() == "larsmomentum":
self.optimizer = fluid.optimizer.LarsMomentum( self.optimizer = fluid.optimizer.LarsMomentum(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
elif self._optimizer_name.lower() == "momentum": elif self._optimizer_name.lower() == "momentum":
self.optimizer = fluid.optimizer.Momentum( self.optimizer = fluid.optimizer.Momentum(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
elif self._optimizer_name.lower() == "decayedadagrad": elif self._optimizer_name.lower() == "decayedadagrad":
self.optimizer = fluid.optimizer.DecayedAdagrad( self.optimizer = fluid.optimizer.DecayedAdagrad(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
elif self._optimizer_name.lower() == "rmsprop": elif self._optimizer_name.lower() == "rmsprop":
self.optimizer = fluid.optimizer.RMSPropOptimizer( self.optimizer = fluid.optimizer.RMSPropOptimizer(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
else: else:
self.optimizer = fluid.optimizer.Adam( self.optimizer = fluid.optimizer.Adam(
learning_rate=self.learning_rate) learning_rate=self.learning_rate, **kwargs)
def execute(self, loss, data_reader, config, dev_count): def execute(self, loss, data_reader, config, dev_count):
if self.optimizer is not None: if self.optimizer is not None:
...@@ -186,10 +186,13 @@ class CombinedStrategy(DefaultStrategy): ...@@ -186,10 +186,13 @@ class CombinedStrategy(DefaultStrategy):
learning_rate=1e-4, learning_rate=1e-4,
scheduler=None, scheduler=None,
regularization=None, regularization=None,
clip=None): clip=None,
**kwargs):
super(CombinedStrategy, self).__init__( super(CombinedStrategy, self).__init__(
optimizer_name=optimizer_name, learning_rate=learning_rate) optimizer_name=optimizer_name,
learning_rate=learning_rate,
**kwargs)
self.kwargs = kwargs
# init set # init set
self.scheduler = { self.scheduler = {
"warmup": 0.0, "warmup": 0.0,
...@@ -379,7 +382,9 @@ class CombinedStrategy(DefaultStrategy): ...@@ -379,7 +382,9 @@ class CombinedStrategy(DefaultStrategy):
# set optimizer # set optimizer
super(CombinedStrategy, self).__init__( super(CombinedStrategy, self).__init__(
optimizer_name=self._optimizer_name, learning_rate=scheduled_lr) optimizer_name=self._optimizer_name,
learning_rate=scheduled_lr,
**self.kwargs)
# discriminative learning rate # discriminative learning rate
# based on layer # based on layer
...@@ -511,6 +516,10 @@ class CombinedStrategy(DefaultStrategy): ...@@ -511,6 +516,10 @@ class CombinedStrategy(DefaultStrategy):
unfreeze_depths=self. unfreeze_depths=self.
sorted_depth[:self.max_depth * self.epoch // sorted_depth[:self.max_depth * self.epoch //
self.scheduler["gradual_unfreeze"]["blocks"]]) self.scheduler["gradual_unfreeze"]["blocks"]])
else:
logger.warning(
"The max op-depth in the network is %s. That results in that can't use the gradual unfreeze finetune strategy."
% (self.max_depth))
elif self.scheduler["gradual_unfreeze"]["params_layer"]: elif self.scheduler["gradual_unfreeze"]["params_layer"]:
max_layer = max( max_layer = max(
self.scheduler["gradual_unfreeze"]["params_layer"].values()) self.scheduler["gradual_unfreeze"]["params_layer"].values())
...@@ -564,7 +573,8 @@ class AdamWeightDecayStrategy(CombinedStrategy): ...@@ -564,7 +573,8 @@ class AdamWeightDecayStrategy(CombinedStrategy):
lr_scheduler="linear_decay", lr_scheduler="linear_decay",
warmup_proportion=0.1, warmup_proportion=0.1,
weight_decay=0.01, weight_decay=0.01,
optimizer_name="adam"): optimizer_name="adam",
**kwargs):
scheduler = {"warmup": warmup_proportion} scheduler = {"warmup": warmup_proportion}
if lr_scheduler == "noam_decay": if lr_scheduler == "noam_decay":
scheduler["noam_decay"] = True scheduler["noam_decay"] = True
...@@ -583,14 +593,16 @@ class AdamWeightDecayStrategy(CombinedStrategy): ...@@ -583,14 +593,16 @@ class AdamWeightDecayStrategy(CombinedStrategy):
learning_rate=learning_rate, learning_rate=learning_rate,
scheduler=scheduler, scheduler=scheduler,
regularization=regularization, regularization=regularization,
clip=clip) clip=clip,
**kwargs)
class L2SPFinetuneStrategy(CombinedStrategy): class L2SPFinetuneStrategy(CombinedStrategy):
def __init__(self, def __init__(self,
learning_rate=1e-4, learning_rate=1e-4,
optimizer_name="adam", optimizer_name="adam",
regularization_coeff=1e-3): regularization_coeff=1e-3,
**kwargs):
scheduler = {} scheduler = {}
regularization = {"L2SP": regularization_coeff} regularization = {"L2SP": regularization_coeff}
clip = {} clip = {}
...@@ -599,14 +611,16 @@ class L2SPFinetuneStrategy(CombinedStrategy): ...@@ -599,14 +611,16 @@ class L2SPFinetuneStrategy(CombinedStrategy):
learning_rate=learning_rate, learning_rate=learning_rate,
scheduler=scheduler, scheduler=scheduler,
regularization=regularization, regularization=regularization,
clip=clip) clip=clip,
**kwargs)
class DefaultFinetuneStrategy(CombinedStrategy): class DefaultFinetuneStrategy(CombinedStrategy):
def __init__(self, def __init__(self,
learning_rate=1e-4, learning_rate=1e-4,
optimizer_name="adam", optimizer_name="adam",
regularization_coeff=1e-3): regularization_coeff=1e-3,
**kwargs):
scheduler = {} scheduler = {}
regularization = {"L2": regularization_coeff} regularization = {"L2": regularization_coeff}
clip = {} clip = {}
...@@ -616,7 +630,8 @@ class DefaultFinetuneStrategy(CombinedStrategy): ...@@ -616,7 +630,8 @@ class DefaultFinetuneStrategy(CombinedStrategy):
learning_rate=learning_rate, learning_rate=learning_rate,
scheduler=scheduler, scheduler=scheduler,
regularization=regularization, regularization=regularization,
clip=clip) clip=clip,
**kwargs)
class ULMFiTStrategy(CombinedStrategy): class ULMFiTStrategy(CombinedStrategy):
...@@ -627,9 +642,9 @@ class ULMFiTStrategy(CombinedStrategy): ...@@ -627,9 +642,9 @@ class ULMFiTStrategy(CombinedStrategy):
ratio=32, ratio=32,
dis_blocks=3, dis_blocks=3,
factor=2.6, factor=2.6,
dis_params_layer=None,
frz_blocks=3, frz_blocks=3,
frz_params_layer=None): params_layer=None,
**kwargs):
scheduler = { scheduler = {
"slanted_triangle": { "slanted_triangle": {
...@@ -638,12 +653,12 @@ class ULMFiTStrategy(CombinedStrategy): ...@@ -638,12 +653,12 @@ class ULMFiTStrategy(CombinedStrategy):
}, },
"gradual_unfreeze": { "gradual_unfreeze": {
"blocks": frz_blocks, "blocks": frz_blocks,
"params_layer": frz_params_layer "params_layer": params_layer
}, },
"discriminative": { "discriminative": {
"blocks": dis_blocks, "blocks": dis_blocks,
"factor": factor, "factor": factor,
"params_layer": dis_params_layer "params_layer": params_layer
} }
} }
regularization = {} regularization = {}
...@@ -653,4 +668,5 @@ class ULMFiTStrategy(CombinedStrategy): ...@@ -653,4 +668,5 @@ class ULMFiTStrategy(CombinedStrategy):
learning_rate=learning_rate, learning_rate=learning_rate,
scheduler=scheduler, scheduler=scheduler,
regularization=regularization, regularization=regularization,
clip=clip) clip=clip,
**kwargs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册