Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
2c609e01
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2c609e01
编写于
3月 14, 2022
作者:
K
KP
提交者:
GitHub
3月 14, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1687 from rainyfly/add_EnlightenGAN_module
add EnlightenGAN module
上级
27b1e6d9
658ec814
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
496 addition
and
0 deletion
+496
-0
modules/image/image_processing/enlightengan/README.md
modules/image/image_processing/enlightengan/README.md
+137
-0
modules/image/image_processing/enlightengan/enlighten_inference/pd_model/x2paddle_code.py
...nlightengan/enlighten_inference/pd_model/x2paddle_code.py
+201
-0
modules/image/image_processing/enlightengan/module.py
modules/image/image_processing/enlightengan/module.py
+147
-0
modules/image/image_processing/enlightengan/util.py
modules/image/image_processing/enlightengan/util.py
+11
-0
未找到文件。
modules/image/image_processing/enlightengan/README.md
0 → 100644
浏览文件 @
2c609e01
# enlightengan
|模型名称|enlightengan|
| :--- | :---: |
|类别|图像 - 暗光增强|
|网络|EnlightenGAN|
|数据集|-|
|是否支持Fine-tuning|否|
|模型大小|83MB|
|最新更新日期|2021-11-04|
|数据指标|-|
## 一、模型基本信息
-
### 应用效果展示
-
样例结果示例:
<p
align=
"center"
>
<img
src=
"https://user-images.githubusercontent.com/22424850/142827116-76d713c6-94d9-410d-830a-65135cd856b8.jpeg"
width =
"450"
height =
"300"
hspace=
'10'
/>
<br
/>
输入图像
<br
/>
<img
src=
"https://user-images.githubusercontent.com/22424850/142827262-97317323-f6bd-4aa4-b7ac-c69436c4d576.png"
width =
"450"
height =
"300"
hspace=
'10'
/>
<br
/>
输出图像
<br
/>
</p>
-
### 模型介绍
-
EnlightenGAN使用非成对的数据进行训练,通过设计自特征保留损失函数和自约束注意力机制,训练的网络可以应用到多种场景下的暗光增强中。
-
更多详情参考:
[
EnlightenGAN: Deep Light Enhancement without Paired Supervision
](
https://arxiv.org/abs/1906.06972
)
## 二、安装
-
### 1、环境依赖
-
onnxruntime
-
x2paddle
-
pillow
-
### 2、安装
-
```shell
$ hub install enlightengan
```
-
如您安装时遇到问题,可参考:
[
零基础windows安装
](
../../../../docs/docs_ch/get_start/windows_quickstart.md
)
|
[
零基础Linux安装
](
../../../../docs/docs_ch/get_start/linux_quickstart.md
)
|
[
零基础MacOS安装
](
../../../../docs/docs_ch/get_start/mac_quickstart.md
)
## 三、模型API预测
-
### 1、命令行预测
-
```shell
# Read from a file
$ hub run enlightengan --input_path "/PATH/TO/IMAGE"
```
-
通过命令行方式实现暗光增强模型的调用,更多请见
[
PaddleHub命令行指令
](
../../../../docs/docs_ch/tutorial/cmd_usage.rst
)
-
### 2、预测代码示例
-
```python
import paddlehub as hub
enlightener = hub.Module(name="enlightengan")
input_path = ["/PATH/TO/IMAGE"]
# Read from a file
enlightener.enlightening(paths=input_path, output_dir='./enlightening_result/', use_gpu=True)
```
-
### 3、API
-
```python
def enlightening(images=None, paths=None, output_dir='./enlightening_result/', use_gpu=False, visualization=True)
```
-
暗光增强API。
- **参数**
- images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\];<br/>
- paths (list\[str\]): 图片的路径;<br/>
- output\_dir (str): 结果保存的路径; <br/>
- use\_gpu (bool): 是否使用 GPU;<br/>
- visualization(bool): 是否保存结果到本地文件夹
## 四、服务部署
-
PaddleHub Serving可以部署一个在线图像风格转换服务。
-
### 第一步:启动PaddleHub Serving
-
运行启动命令:
-
```shell
$ hub serving start -m enlightengan
```
-
这样就完成了一个图像风格转换的在线服务API的部署,默认端口号为8866。
-
**NOTE:**
如使用GPU预测,则需要在启动服务之前,请设置CUDA
\_
VISIBLE
\_
DEVICES环境变量,否则不用设置。
-
### 第二步:发送预测请求
-
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
-
```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/enlightengan"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
## 五、更新历史
*
1.0.0
初始发布
-
```shell
$ hub install enlightengan==1.0.0
```
modules/image/image_processing/enlightengan/enlighten_inference/pd_model/x2paddle_code.py
0 → 100755
浏览文件 @
2c609e01
import
paddle
import
math
class
ONNXModel
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
ONNXModel
,
self
).
__init__
()
self
.
conv0
=
paddle
.
nn
.
Conv2D
(
in_channels
=
3
,
out_channels
=
3
,
kernel_size
=
[
1
,
1
],
groups
=
3
)
self
.
pool0
=
paddle
.
nn
.
MaxPool2D
(
kernel_size
=
[
2
,
2
],
stride
=
2
)
self
.
pool1
=
paddle
.
nn
.
MaxPool2D
(
kernel_size
=
[
2
,
2
],
stride
=
2
)
self
.
conv1
=
paddle
.
nn
.
Conv2D
(
in_channels
=
4
,
out_channels
=
32
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
pool2
=
paddle
.
nn
.
MaxPool2D
(
kernel_size
=
[
2
,
2
],
stride
=
2
)
self
.
leakyrelu0
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
pool3
=
paddle
.
nn
.
MaxPool2D
(
kernel_size
=
[
2
,
2
],
stride
=
2
)
self
.
batchnorm0
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
32
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv2
=
paddle
.
nn
.
Conv2D
(
in_channels
=
32
,
out_channels
=
32
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu1
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm1
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
32
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
pool4
=
paddle
.
nn
.
MaxPool2D
(
kernel_size
=
[
2
,
2
],
stride
=
2
)
self
.
conv3
=
paddle
.
nn
.
Conv2D
(
in_channels
=
32
,
out_channels
=
64
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu2
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm2
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
64
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv4
=
paddle
.
nn
.
Conv2D
(
in_channels
=
64
,
out_channels
=
64
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu3
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm3
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
64
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
pool5
=
paddle
.
nn
.
MaxPool2D
(
kernel_size
=
[
2
,
2
],
stride
=
2
)
self
.
conv5
=
paddle
.
nn
.
Conv2D
(
in_channels
=
64
,
out_channels
=
128
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu4
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm4
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
128
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv6
=
paddle
.
nn
.
Conv2D
(
in_channels
=
128
,
out_channels
=
128
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu5
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm5
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
128
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
pool6
=
paddle
.
nn
.
MaxPool2D
(
kernel_size
=
[
2
,
2
],
stride
=
2
)
self
.
conv7
=
paddle
.
nn
.
Conv2D
(
in_channels
=
128
,
out_channels
=
256
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu6
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm6
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
256
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv8
=
paddle
.
nn
.
Conv2D
(
in_channels
=
256
,
out_channels
=
256
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu7
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm7
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
256
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
pool7
=
paddle
.
nn
.
MaxPool2D
(
kernel_size
=
[
2
,
2
],
stride
=
2
)
self
.
conv9
=
paddle
.
nn
.
Conv2D
(
in_channels
=
256
,
out_channels
=
512
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu8
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm8
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
512
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv10
=
paddle
.
nn
.
Conv2D
(
in_channels
=
512
,
out_channels
=
512
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu9
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm9
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
512
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv11
=
paddle
.
nn
.
Conv2D
(
in_channels
=
512
,
out_channels
=
256
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
conv12
=
paddle
.
nn
.
Conv2D
(
in_channels
=
512
,
out_channels
=
256
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu10
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm10
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
256
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv13
=
paddle
.
nn
.
Conv2D
(
in_channels
=
256
,
out_channels
=
256
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu11
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm11
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
256
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv14
=
paddle
.
nn
.
Conv2D
(
in_channels
=
256
,
out_channels
=
128
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
conv15
=
paddle
.
nn
.
Conv2D
(
in_channels
=
256
,
out_channels
=
128
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu12
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm12
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
128
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv16
=
paddle
.
nn
.
Conv2D
(
in_channels
=
128
,
out_channels
=
128
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu13
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm13
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
128
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv17
=
paddle
.
nn
.
Conv2D
(
in_channels
=
128
,
out_channels
=
64
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
conv18
=
paddle
.
nn
.
Conv2D
(
in_channels
=
128
,
out_channels
=
64
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu14
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm14
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
64
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv19
=
paddle
.
nn
.
Conv2D
(
in_channels
=
64
,
out_channels
=
64
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu15
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm15
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
64
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv20
=
paddle
.
nn
.
Conv2D
(
in_channels
=
64
,
out_channels
=
32
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
conv21
=
paddle
.
nn
.
Conv2D
(
in_channels
=
64
,
out_channels
=
32
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu16
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
batchnorm16
=
paddle
.
nn
.
BatchNorm
(
num_channels
=
32
,
momentum
=
0.8999999761581421
,
epsilon
=
9.999999747378752e-06
,
is_test
=
True
)
self
.
conv22
=
paddle
.
nn
.
Conv2D
(
in_channels
=
32
,
out_channels
=
32
,
kernel_size
=
[
3
,
3
],
padding
=
1
)
self
.
leakyrelu17
=
paddle
.
nn
.
LeakyReLU
(
negative_slope
=
0.20000000298023224
)
self
.
conv23
=
paddle
.
nn
.
Conv2D
(
in_channels
=
32
,
out_channels
=
3
,
kernel_size
=
[
1
,
1
])
def
forward
(
self
,
x2paddle_input
):
x2paddle_137
=
paddle
.
full
(
dtype
=
'float32'
,
shape
=
[
1
],
fill_value
=
1.0
)
x2paddle_145
=
paddle
.
full
(
dtype
=
'float32'
,
shape
=
[
1
],
fill_value
=
0.29899999499320984
)
x2paddle_147
=
paddle
.
full
(
dtype
=
'float32'
,
shape
=
[
1
],
fill_value
=
0.5870000123977661
)
x2paddle_150
=
paddle
.
full
(
dtype
=
'float32'
,
shape
=
[
1
],
fill_value
=
0.11400000005960464
)
x2paddle_153
=
paddle
.
full
(
dtype
=
'float32'
,
shape
=
[
1
],
fill_value
=
2.0
)
x2paddle_155
=
paddle
.
full
(
dtype
=
'float32'
,
shape
=
[
1
],
fill_value
=
1.0
)
x2paddle_256
=
paddle
.
full
(
dtype
=
'float32'
,
shape
=
[
1
],
fill_value
=
1.0
)
x2paddle_134
=
self
.
conv0
(
x2paddle_input
)
x2paddle_135
,
=
paddle
.
split
(
x
=
x2paddle_134
,
num_or_sections
=
[
1
])
x2paddle_257
=
paddle
.
multiply
(
x
=
x2paddle_134
,
y
=
x2paddle_256
)
x2paddle_136
=
paddle
.
squeeze
(
x
=
x2paddle_135
,
axis
=
[
0
])
x2paddle_138
=
paddle
.
add
(
x
=
x2paddle_136
,
y
=
x2paddle_137
)
x2paddle_139_p0
,
x2paddle_139_p1
,
x2paddle_139_p2
=
paddle
.
split
(
x
=
x2paddle_138
,
num_or_sections
=
[
1
,
1
,
1
])
x2paddle_142
=
paddle
.
squeeze
(
x
=
x2paddle_139_p0
,
axis
=
[
0
])
x2paddle_143
=
paddle
.
squeeze
(
x
=
x2paddle_139_p1
,
axis
=
[
0
])
x2paddle_144
=
paddle
.
squeeze
(
x
=
x2paddle_139_p2
,
axis
=
[
0
])
x2paddle_146
=
paddle
.
multiply
(
x
=
x2paddle_142
,
y
=
x2paddle_145
)
x2paddle_148
=
paddle
.
multiply
(
x
=
x2paddle_143
,
y
=
x2paddle_147
)
x2paddle_151
=
paddle
.
multiply
(
x
=
x2paddle_144
,
y
=
x2paddle_150
)
x2paddle_149
=
paddle
.
add
(
x
=
x2paddle_146
,
y
=
x2paddle_148
)
x2paddle_152
=
paddle
.
add
(
x
=
x2paddle_149
,
y
=
x2paddle_151
)
x2paddle_154
=
paddle
.
divide
(
x
=
x2paddle_152
,
y
=
x2paddle_153
)
x2paddle_156
=
paddle
.
subtract
(
x
=
x2paddle_155
,
y
=
x2paddle_154
)
x2paddle_157
=
paddle
.
unsqueeze
(
x
=
x2paddle_156
,
axis
=
[
0
])
x2paddle_158
=
paddle
.
unsqueeze
(
x
=
x2paddle_157
,
axis
=
[
0
])
x2paddle_159
=
self
.
pool0
(
x2paddle_158
)
x2paddle_163
=
paddle
.
concat
(
x
=
[
x2paddle_134
,
x2paddle_158
],
axis
=
1
)
x2paddle_160
=
self
.
pool1
(
x2paddle_159
)
x2paddle_164
=
self
.
conv1
(
x2paddle_163
)
x2paddle_161
=
self
.
pool2
(
x2paddle_160
)
x2paddle_165
=
self
.
leakyrelu0
(
x2paddle_164
)
x2paddle_162
=
self
.
pool3
(
x2paddle_161
)
x2paddle_166
=
self
.
batchnorm0
(
x2paddle_165
)
x2paddle_167
=
self
.
conv2
(
x2paddle_166
)
x2paddle_168
=
self
.
leakyrelu1
(
x2paddle_167
)
x2paddle_169
=
self
.
batchnorm1
(
x2paddle_168
)
x2paddle_170
=
self
.
pool4
(
x2paddle_169
)
x2paddle_246
=
paddle
.
multiply
(
x
=
x2paddle_169
,
y
=
x2paddle_158
)
x2paddle_171
=
self
.
conv3
(
x2paddle_170
)
x2paddle_172
=
self
.
leakyrelu2
(
x2paddle_171
)
x2paddle_173
=
self
.
batchnorm2
(
x2paddle_172
)
x2paddle_174
=
self
.
conv4
(
x2paddle_173
)
x2paddle_175
=
self
.
leakyrelu3
(
x2paddle_174
)
x2paddle_176
=
self
.
batchnorm3
(
x2paddle_175
)
x2paddle_177
=
self
.
pool5
(
x2paddle_176
)
x2paddle_232
=
paddle
.
multiply
(
x
=
x2paddle_176
,
y
=
x2paddle_159
)
x2paddle_178
=
self
.
conv5
(
x2paddle_177
)
x2paddle_179
=
self
.
leakyrelu4
(
x2paddle_178
)
x2paddle_180
=
self
.
batchnorm4
(
x2paddle_179
)
x2paddle_181
=
self
.
conv6
(
x2paddle_180
)
x2paddle_182
=
self
.
leakyrelu5
(
x2paddle_181
)
x2paddle_183
=
self
.
batchnorm5
(
x2paddle_182
)
x2paddle_184
=
self
.
pool6
(
x2paddle_183
)
x2paddle_218
=
paddle
.
multiply
(
x
=
x2paddle_183
,
y
=
x2paddle_160
)
x2paddle_185
=
self
.
conv7
(
x2paddle_184
)
x2paddle_186
=
self
.
leakyrelu6
(
x2paddle_185
)
x2paddle_187
=
self
.
batchnorm6
(
x2paddle_186
)
x2paddle_188
=
self
.
conv8
(
x2paddle_187
)
x2paddle_189
=
self
.
leakyrelu7
(
x2paddle_188
)
x2paddle_190
=
self
.
batchnorm7
(
x2paddle_189
)
x2paddle_191
=
self
.
pool7
(
x2paddle_190
)
x2paddle_204
=
paddle
.
multiply
(
x
=
x2paddle_190
,
y
=
x2paddle_161
)
x2paddle_192
=
self
.
conv9
(
x2paddle_191
)
x2paddle_193
=
self
.
leakyrelu8
(
x2paddle_192
)
x2paddle_194
=
self
.
batchnorm8
(
x2paddle_193
)
x2paddle_195
=
paddle
.
multiply
(
x
=
x2paddle_194
,
y
=
x2paddle_162
)
x2paddle_196
=
self
.
conv10
(
x2paddle_195
)
x2paddle_197
=
self
.
leakyrelu9
(
x2paddle_196
)
x2paddle_198
=
self
.
batchnorm9
(
x2paddle_197
)
x2paddle_203
=
paddle
.
nn
.
functional
.
interpolate
(
x
=
x2paddle_198
,
scale_factor
=
[
2.0
,
2.0
],
mode
=
'bilinear'
)
x2paddle_205
=
self
.
conv11
(
x2paddle_203
)
x2paddle_206
=
paddle
.
concat
(
x
=
[
x2paddle_205
,
x2paddle_204
],
axis
=
1
)
x2paddle_207
=
self
.
conv12
(
x2paddle_206
)
x2paddle_208
=
self
.
leakyrelu10
(
x2paddle_207
)
x2paddle_209
=
self
.
batchnorm10
(
x2paddle_208
)
x2paddle_210
=
self
.
conv13
(
x2paddle_209
)
x2paddle_211
=
self
.
leakyrelu11
(
x2paddle_210
)
x2paddle_212
=
self
.
batchnorm11
(
x2paddle_211
)
x2paddle_217
=
paddle
.
nn
.
functional
.
interpolate
(
x
=
x2paddle_212
,
scale_factor
=
[
2.0
,
2.0
],
mode
=
'bilinear'
)
x2paddle_219
=
self
.
conv14
(
x2paddle_217
)
x2paddle_220
=
paddle
.
concat
(
x
=
[
x2paddle_219
,
x2paddle_218
],
axis
=
1
)
x2paddle_221
=
self
.
conv15
(
x2paddle_220
)
x2paddle_222
=
self
.
leakyrelu12
(
x2paddle_221
)
x2paddle_223
=
self
.
batchnorm12
(
x2paddle_222
)
x2paddle_224
=
self
.
conv16
(
x2paddle_223
)
x2paddle_225
=
self
.
leakyrelu13
(
x2paddle_224
)
x2paddle_226
=
self
.
batchnorm13
(
x2paddle_225
)
x2paddle_231
=
paddle
.
nn
.
functional
.
interpolate
(
x
=
x2paddle_226
,
scale_factor
=
[
2.0
,
2.0
],
mode
=
'bilinear'
)
x2paddle_233
=
self
.
conv17
(
x2paddle_231
)
x2paddle_234
=
paddle
.
concat
(
x
=
[
x2paddle_233
,
x2paddle_232
],
axis
=
1
)
x2paddle_235
=
self
.
conv18
(
x2paddle_234
)
x2paddle_236
=
self
.
leakyrelu14
(
x2paddle_235
)
x2paddle_237
=
self
.
batchnorm14
(
x2paddle_236
)
x2paddle_238
=
self
.
conv19
(
x2paddle_237
)
x2paddle_239
=
self
.
leakyrelu15
(
x2paddle_238
)
x2paddle_240
=
self
.
batchnorm15
(
x2paddle_239
)
x2paddle_245
=
paddle
.
nn
.
functional
.
interpolate
(
x
=
x2paddle_240
,
scale_factor
=
[
2.0
,
2.0
],
mode
=
'bilinear'
)
x2paddle_247
=
self
.
conv20
(
x2paddle_245
)
x2paddle_248
=
paddle
.
concat
(
x
=
[
x2paddle_247
,
x2paddle_246
],
axis
=
1
)
x2paddle_249
=
self
.
conv21
(
x2paddle_248
)
x2paddle_250
=
self
.
leakyrelu16
(
x2paddle_249
)
x2paddle_251
=
self
.
batchnorm16
(
x2paddle_250
)
x2paddle_252
=
self
.
conv22
(
x2paddle_251
)
x2paddle_253
=
self
.
leakyrelu17
(
x2paddle_252
)
x2paddle_254
=
self
.
conv23
(
x2paddle_253
)
x2paddle_255
=
paddle
.
multiply
(
x
=
x2paddle_254
,
y
=
x2paddle_158
)
x2paddle_output
=
paddle
.
add
(
x
=
x2paddle_255
,
y
=
x2paddle_257
)
return
x2paddle_output
,
x2paddle_255
modules/image/image_processing/enlightengan/module.py
0 → 100644
浏览文件 @
2c609e01
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
os
import
cv2
import
numpy
as
np
import
paddle
import
paddlehub
as
hub
from
.enlighten_inference.pd_model.x2paddle_code
import
ONNXModel
from
.util
import
base64_to_cv2
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.module
import
runnable
from
paddlehub.module.module
import
serving
@
moduleinfo
(
name
=
"enlightengan"
,
type
=
"CV/enlighten"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
""
,
version
=
"1.0.0"
)
class
EnlightenGAN
:
def
__init__
(
self
):
self
.
pretrained_model
=
os
.
path
.
join
(
self
.
directory
,
"enlighten_inference/pd_model"
)
self
.
model
=
ONNXModel
()
params
=
paddle
.
load
(
os
.
path
.
join
(
self
.
pretrained_model
,
'model.pdparams'
))
self
.
model
.
set_dict
(
params
,
use_structured_name
=
True
)
def
enlightening
(
self
,
images
:
list
=
None
,
paths
:
list
=
None
,
output_dir
:
str
=
'./enlightening_result/'
,
use_gpu
:
bool
=
False
,
visualization
:
bool
=
True
):
'''
enlighten images in the low-light scene.
images (list[numpy.ndarray]): data of images, shape of each is [H, W, C], color space must be BGR(read by cv2).
paths (list[str]): paths to images
output_dir (str): the dir to save the results
use_gpu (bool): if True, use gpu to perform the computation, otherwise cpu.
visualization (bool): if True, save results in output_dir.
'''
results
=
[]
paddle
.
disable_static
()
place
=
'gpu:0'
if
use_gpu
else
'cpu'
place
=
paddle
.
set_device
(
place
)
if
images
==
None
and
paths
==
None
:
print
(
'No image provided. Please input an image or a image path.'
)
return
self
.
model
.
eval
()
if
images
!=
None
:
for
image
in
images
:
image
=
image
[:,
:,
::
-
1
]
image
=
np
.
expand_dims
(
np
.
transpose
(
image
,
(
2
,
0
,
1
)).
astype
(
np
.
float32
)
/
255.
,
0
)
inputtensor
=
paddle
.
to_tensor
(
image
)
out
,
out1
=
self
.
model
(
inputtensor
)
out
=
out
.
numpy
()[
0
]
out
=
(
np
.
transpose
(
out
,
(
1
,
2
,
0
))
+
1
)
/
2.0
*
255.0
out
=
np
.
clip
(
out
,
0
,
255
)
out
=
out
.
astype
(
'uint8'
)
results
.
append
(
out
)
if
paths
!=
None
:
for
path
in
paths
:
image
=
cv2
.
imread
(
path
)[:,
:,
::
-
1
]
image
=
np
.
expand_dims
(
np
.
transpose
(
image
,
(
2
,
0
,
1
)).
astype
(
np
.
float32
)
/
255.
,
0
)
inputtensor
=
paddle
.
to_tensor
(
image
)
out
,
out1
=
self
.
model
(
inputtensor
)
out
=
out
.
numpy
()[
0
]
out
=
(
np
.
transpose
(
out
,
(
1
,
2
,
0
))
+
1
)
/
2.0
*
255.0
out
=
np
.
clip
(
out
,
0
,
255
)
out
=
out
.
astype
(
'uint8'
)
results
.
append
(
out
)
if
visualization
==
True
:
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
for
i
,
out
in
enumerate
(
results
):
cv2
.
imwrite
(
os
.
path
.
join
(
output_dir
,
'output_{}.png'
.
format
(
i
)),
out
[:,
:,
::
-
1
])
return
results
@
runnable
def
run_cmd
(
self
,
argvs
:
list
):
"""
Run as a command.
"""
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
add_help
=
True
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
title
=
"Config options"
,
description
=
"Run configuration for controlling module behavior, not required."
)
self
.
add_module_config_arg
()
self
.
add_module_input_arg
()
self
.
args
=
self
.
parser
.
parse_args
(
argvs
)
results
=
self
.
enlightening
(
paths
=
[
self
.
args
.
input_path
],
output_dir
=
self
.
args
.
output_dir
,
use_gpu
=
self
.
args
.
use_gpu
,
visualization
=
self
.
args
.
visualization
)
return
results
@
serving
def
serving_method
(
self
,
images
,
**
kwargs
):
"""
Run as a service.
"""
images_decode
=
[
base64_to_cv2
(
image
)
for
image
in
images
]
results
=
self
.
enlightening
(
images
=
images_decode
,
**
kwargs
)
tolist
=
[
result
.
tolist
()
for
result
in
results
]
return
tolist
def
add_module_config_arg
(
self
):
"""
Add the command config options.
"""
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
action
=
'store_true'
,
help
=
"use GPU or not"
)
self
.
arg_config_group
.
add_argument
(
'--output_dir'
,
type
=
str
,
default
=
'enlightening_result'
,
help
=
'output directory for saving result.'
)
self
.
arg_config_group
.
add_argument
(
'--visualization'
,
type
=
bool
,
default
=
False
,
help
=
'save results or not.'
)
def
add_module_input_arg
(
self
):
"""
Add the command input options.
"""
self
.
arg_input_group
.
add_argument
(
'--input_path'
,
type
=
str
,
help
=
"path to input image."
)
modules/image/image_processing/enlightengan/util.py
0 → 100644
浏览文件 @
2c609e01
import
base64
import
cv2
import
numpy
as
np
def
base64_to_cv2
(
b64str
):
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录