未验证 提交 2c609e01 编写于 作者: K KP 提交者: GitHub

Merge pull request #1687 from rainyfly/add_EnlightenGAN_module

add EnlightenGAN module
# enlightengan
|模型名称|enlightengan|
| :--- | :---: |
|类别|图像 - 暗光增强|
|网络|EnlightenGAN|
|数据集|-|
|是否支持Fine-tuning|否|
|模型大小|83MB|
|最新更新日期|2021-11-04|
|数据指标|-|
## 一、模型基本信息
- ### 应用效果展示
- 样例结果示例:
<p align="center">
<img src="https://user-images.githubusercontent.com/22424850/142827116-76d713c6-94d9-410d-830a-65135cd856b8.jpeg" width = "450" height = "300" hspace='10'/>
<br />
输入图像
<br />
<img src="https://user-images.githubusercontent.com/22424850/142827262-97317323-f6bd-4aa4-b7ac-c69436c4d576.png" width = "450" height = "300" hspace='10'/>
<br />
输出图像
<br />
</p>
- ### 模型介绍
- EnlightenGAN使用非成对的数据进行训练,通过设计自特征保留损失函数和自约束注意力机制,训练的网络可以应用到多种场景下的暗光增强中。
- 更多详情参考:[EnlightenGAN: Deep Light Enhancement without Paired Supervision](https://arxiv.org/abs/1906.06972)
## 二、安装
- ### 1、环境依赖
- onnxruntime
- x2paddle
- pillow
- ### 2、安装
- ```shell
$ hub install enlightengan
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、命令行预测
- ```shell
# Read from a file
$ hub run enlightengan --input_path "/PATH/TO/IMAGE"
```
- 通过命令行方式实现暗光增强模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
- ### 2、预测代码示例
- ```python
import paddlehub as hub
enlightener = hub.Module(name="enlightengan")
input_path = ["/PATH/TO/IMAGE"]
# Read from a file
enlightener.enlightening(paths=input_path, output_dir='./enlightening_result/', use_gpu=True)
```
- ### 3、API
- ```python
def enlightening(images=None, paths=None, output_dir='./enlightening_result/', use_gpu=False, visualization=True)
```
- 暗光增强API。
- **参数**
- images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\];<br/>
- paths (list\[str\]): 图片的路径;<br/>
- output\_dir (str): 结果保存的路径; <br/>
- use\_gpu (bool): 是否使用 GPU;<br/>
- visualization(bool): 是否保存结果到本地文件夹
## 四、服务部署
- PaddleHub Serving可以部署一个在线图像风格转换服务。
- ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m enlightengan
```
- 这样就完成了一个图像风格转换的在线服务API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/enlightengan"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
## 五、更新历史
* 1.0.0
初始发布
- ```shell
$ hub install enlightengan==1.0.0
```
import paddle
import math
class ONNXModel(paddle.nn.Layer):
def __init__(self):
super(ONNXModel, self).__init__()
self.conv0 = paddle.nn.Conv2D(in_channels=3, out_channels=3, kernel_size=[1, 1], groups=3)
self.pool0 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
self.pool1 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
self.conv1 = paddle.nn.Conv2D(in_channels=4, out_channels=32, kernel_size=[3, 3], padding=1)
self.pool2 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
self.leakyrelu0 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.pool3 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
self.batchnorm0 = paddle.nn.BatchNorm(
num_channels=32, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=32, kernel_size=[3, 3], padding=1)
self.leakyrelu1 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm1 = paddle.nn.BatchNorm(
num_channels=32, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.pool4 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
self.conv3 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=[3, 3], padding=1)
self.leakyrelu2 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm2 = paddle.nn.BatchNorm(
num_channels=64, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv4 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=[3, 3], padding=1)
self.leakyrelu3 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm3 = paddle.nn.BatchNorm(
num_channels=64, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.pool5 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
self.conv5 = paddle.nn.Conv2D(in_channels=64, out_channels=128, kernel_size=[3, 3], padding=1)
self.leakyrelu4 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm4 = paddle.nn.BatchNorm(
num_channels=128, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv6 = paddle.nn.Conv2D(in_channels=128, out_channels=128, kernel_size=[3, 3], padding=1)
self.leakyrelu5 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm5 = paddle.nn.BatchNorm(
num_channels=128, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.pool6 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
self.conv7 = paddle.nn.Conv2D(in_channels=128, out_channels=256, kernel_size=[3, 3], padding=1)
self.leakyrelu6 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm6 = paddle.nn.BatchNorm(
num_channels=256, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv8 = paddle.nn.Conv2D(in_channels=256, out_channels=256, kernel_size=[3, 3], padding=1)
self.leakyrelu7 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm7 = paddle.nn.BatchNorm(
num_channels=256, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.pool7 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
self.conv9 = paddle.nn.Conv2D(in_channels=256, out_channels=512, kernel_size=[3, 3], padding=1)
self.leakyrelu8 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm8 = paddle.nn.BatchNorm(
num_channels=512, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv10 = paddle.nn.Conv2D(in_channels=512, out_channels=512, kernel_size=[3, 3], padding=1)
self.leakyrelu9 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm9 = paddle.nn.BatchNorm(
num_channels=512, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv11 = paddle.nn.Conv2D(in_channels=512, out_channels=256, kernel_size=[3, 3], padding=1)
self.conv12 = paddle.nn.Conv2D(in_channels=512, out_channels=256, kernel_size=[3, 3], padding=1)
self.leakyrelu10 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm10 = paddle.nn.BatchNorm(
num_channels=256, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv13 = paddle.nn.Conv2D(in_channels=256, out_channels=256, kernel_size=[3, 3], padding=1)
self.leakyrelu11 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm11 = paddle.nn.BatchNorm(
num_channels=256, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv14 = paddle.nn.Conv2D(in_channels=256, out_channels=128, kernel_size=[3, 3], padding=1)
self.conv15 = paddle.nn.Conv2D(in_channels=256, out_channels=128, kernel_size=[3, 3], padding=1)
self.leakyrelu12 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm12 = paddle.nn.BatchNorm(
num_channels=128, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv16 = paddle.nn.Conv2D(in_channels=128, out_channels=128, kernel_size=[3, 3], padding=1)
self.leakyrelu13 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm13 = paddle.nn.BatchNorm(
num_channels=128, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv17 = paddle.nn.Conv2D(in_channels=128, out_channels=64, kernel_size=[3, 3], padding=1)
self.conv18 = paddle.nn.Conv2D(in_channels=128, out_channels=64, kernel_size=[3, 3], padding=1)
self.leakyrelu14 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm14 = paddle.nn.BatchNorm(
num_channels=64, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv19 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=[3, 3], padding=1)
self.leakyrelu15 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm15 = paddle.nn.BatchNorm(
num_channels=64, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv20 = paddle.nn.Conv2D(in_channels=64, out_channels=32, kernel_size=[3, 3], padding=1)
self.conv21 = paddle.nn.Conv2D(in_channels=64, out_channels=32, kernel_size=[3, 3], padding=1)
self.leakyrelu16 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.batchnorm16 = paddle.nn.BatchNorm(
num_channels=32, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
self.conv22 = paddle.nn.Conv2D(in_channels=32, out_channels=32, kernel_size=[3, 3], padding=1)
self.leakyrelu17 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
self.conv23 = paddle.nn.Conv2D(in_channels=32, out_channels=3, kernel_size=[1, 1])
def forward(self, x2paddle_input):
x2paddle_137 = paddle.full(dtype='float32', shape=[1], fill_value=1.0)
x2paddle_145 = paddle.full(dtype='float32', shape=[1], fill_value=0.29899999499320984)
x2paddle_147 = paddle.full(dtype='float32', shape=[1], fill_value=0.5870000123977661)
x2paddle_150 = paddle.full(dtype='float32', shape=[1], fill_value=0.11400000005960464)
x2paddle_153 = paddle.full(dtype='float32', shape=[1], fill_value=2.0)
x2paddle_155 = paddle.full(dtype='float32', shape=[1], fill_value=1.0)
x2paddle_256 = paddle.full(dtype='float32', shape=[1], fill_value=1.0)
x2paddle_134 = self.conv0(x2paddle_input)
x2paddle_135, = paddle.split(x=x2paddle_134, num_or_sections=[1])
x2paddle_257 = paddle.multiply(x=x2paddle_134, y=x2paddle_256)
x2paddle_136 = paddle.squeeze(x=x2paddle_135, axis=[0])
x2paddle_138 = paddle.add(x=x2paddle_136, y=x2paddle_137)
x2paddle_139_p0, x2paddle_139_p1, x2paddle_139_p2 = paddle.split(x=x2paddle_138, num_or_sections=[1, 1, 1])
x2paddle_142 = paddle.squeeze(x=x2paddle_139_p0, axis=[0])
x2paddle_143 = paddle.squeeze(x=x2paddle_139_p1, axis=[0])
x2paddle_144 = paddle.squeeze(x=x2paddle_139_p2, axis=[0])
x2paddle_146 = paddle.multiply(x=x2paddle_142, y=x2paddle_145)
x2paddle_148 = paddle.multiply(x=x2paddle_143, y=x2paddle_147)
x2paddle_151 = paddle.multiply(x=x2paddle_144, y=x2paddle_150)
x2paddle_149 = paddle.add(x=x2paddle_146, y=x2paddle_148)
x2paddle_152 = paddle.add(x=x2paddle_149, y=x2paddle_151)
x2paddle_154 = paddle.divide(x=x2paddle_152, y=x2paddle_153)
x2paddle_156 = paddle.subtract(x=x2paddle_155, y=x2paddle_154)
x2paddle_157 = paddle.unsqueeze(x=x2paddle_156, axis=[0])
x2paddle_158 = paddle.unsqueeze(x=x2paddle_157, axis=[0])
x2paddle_159 = self.pool0(x2paddle_158)
x2paddle_163 = paddle.concat(x=[x2paddle_134, x2paddle_158], axis=1)
x2paddle_160 = self.pool1(x2paddle_159)
x2paddle_164 = self.conv1(x2paddle_163)
x2paddle_161 = self.pool2(x2paddle_160)
x2paddle_165 = self.leakyrelu0(x2paddle_164)
x2paddle_162 = self.pool3(x2paddle_161)
x2paddle_166 = self.batchnorm0(x2paddle_165)
x2paddle_167 = self.conv2(x2paddle_166)
x2paddle_168 = self.leakyrelu1(x2paddle_167)
x2paddle_169 = self.batchnorm1(x2paddle_168)
x2paddle_170 = self.pool4(x2paddle_169)
x2paddle_246 = paddle.multiply(x=x2paddle_169, y=x2paddle_158)
x2paddle_171 = self.conv3(x2paddle_170)
x2paddle_172 = self.leakyrelu2(x2paddle_171)
x2paddle_173 = self.batchnorm2(x2paddle_172)
x2paddle_174 = self.conv4(x2paddle_173)
x2paddle_175 = self.leakyrelu3(x2paddle_174)
x2paddle_176 = self.batchnorm3(x2paddle_175)
x2paddle_177 = self.pool5(x2paddle_176)
x2paddle_232 = paddle.multiply(x=x2paddle_176, y=x2paddle_159)
x2paddle_178 = self.conv5(x2paddle_177)
x2paddle_179 = self.leakyrelu4(x2paddle_178)
x2paddle_180 = self.batchnorm4(x2paddle_179)
x2paddle_181 = self.conv6(x2paddle_180)
x2paddle_182 = self.leakyrelu5(x2paddle_181)
x2paddle_183 = self.batchnorm5(x2paddle_182)
x2paddle_184 = self.pool6(x2paddle_183)
x2paddle_218 = paddle.multiply(x=x2paddle_183, y=x2paddle_160)
x2paddle_185 = self.conv7(x2paddle_184)
x2paddle_186 = self.leakyrelu6(x2paddle_185)
x2paddle_187 = self.batchnorm6(x2paddle_186)
x2paddle_188 = self.conv8(x2paddle_187)
x2paddle_189 = self.leakyrelu7(x2paddle_188)
x2paddle_190 = self.batchnorm7(x2paddle_189)
x2paddle_191 = self.pool7(x2paddle_190)
x2paddle_204 = paddle.multiply(x=x2paddle_190, y=x2paddle_161)
x2paddle_192 = self.conv9(x2paddle_191)
x2paddle_193 = self.leakyrelu8(x2paddle_192)
x2paddle_194 = self.batchnorm8(x2paddle_193)
x2paddle_195 = paddle.multiply(x=x2paddle_194, y=x2paddle_162)
x2paddle_196 = self.conv10(x2paddle_195)
x2paddle_197 = self.leakyrelu9(x2paddle_196)
x2paddle_198 = self.batchnorm9(x2paddle_197)
x2paddle_203 = paddle.nn.functional.interpolate(x=x2paddle_198, scale_factor=[2.0, 2.0], mode='bilinear')
x2paddle_205 = self.conv11(x2paddle_203)
x2paddle_206 = paddle.concat(x=[x2paddle_205, x2paddle_204], axis=1)
x2paddle_207 = self.conv12(x2paddle_206)
x2paddle_208 = self.leakyrelu10(x2paddle_207)
x2paddle_209 = self.batchnorm10(x2paddle_208)
x2paddle_210 = self.conv13(x2paddle_209)
x2paddle_211 = self.leakyrelu11(x2paddle_210)
x2paddle_212 = self.batchnorm11(x2paddle_211)
x2paddle_217 = paddle.nn.functional.interpolate(x=x2paddle_212, scale_factor=[2.0, 2.0], mode='bilinear')
x2paddle_219 = self.conv14(x2paddle_217)
x2paddle_220 = paddle.concat(x=[x2paddle_219, x2paddle_218], axis=1)
x2paddle_221 = self.conv15(x2paddle_220)
x2paddle_222 = self.leakyrelu12(x2paddle_221)
x2paddle_223 = self.batchnorm12(x2paddle_222)
x2paddle_224 = self.conv16(x2paddle_223)
x2paddle_225 = self.leakyrelu13(x2paddle_224)
x2paddle_226 = self.batchnorm13(x2paddle_225)
x2paddle_231 = paddle.nn.functional.interpolate(x=x2paddle_226, scale_factor=[2.0, 2.0], mode='bilinear')
x2paddle_233 = self.conv17(x2paddle_231)
x2paddle_234 = paddle.concat(x=[x2paddle_233, x2paddle_232], axis=1)
x2paddle_235 = self.conv18(x2paddle_234)
x2paddle_236 = self.leakyrelu14(x2paddle_235)
x2paddle_237 = self.batchnorm14(x2paddle_236)
x2paddle_238 = self.conv19(x2paddle_237)
x2paddle_239 = self.leakyrelu15(x2paddle_238)
x2paddle_240 = self.batchnorm15(x2paddle_239)
x2paddle_245 = paddle.nn.functional.interpolate(x=x2paddle_240, scale_factor=[2.0, 2.0], mode='bilinear')
x2paddle_247 = self.conv20(x2paddle_245)
x2paddle_248 = paddle.concat(x=[x2paddle_247, x2paddle_246], axis=1)
x2paddle_249 = self.conv21(x2paddle_248)
x2paddle_250 = self.leakyrelu16(x2paddle_249)
x2paddle_251 = self.batchnorm16(x2paddle_250)
x2paddle_252 = self.conv22(x2paddle_251)
x2paddle_253 = self.leakyrelu17(x2paddle_252)
x2paddle_254 = self.conv23(x2paddle_253)
x2paddle_255 = paddle.multiply(x=x2paddle_254, y=x2paddle_158)
x2paddle_output = paddle.add(x=x2paddle_255, y=x2paddle_257)
return x2paddle_output, x2paddle_255
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import cv2
import numpy as np
import paddle
import paddlehub as hub
from .enlighten_inference.pd_model.x2paddle_code import ONNXModel
from .util import base64_to_cv2
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
@moduleinfo(name="enlightengan",
type="CV/enlighten",
author="paddlepaddle",
author_email="",
summary="",
version="1.0.0")
class EnlightenGAN:
def __init__(self):
self.pretrained_model = os.path.join(self.directory, "enlighten_inference/pd_model")
self.model = ONNXModel()
params = paddle.load(os.path.join(self.pretrained_model, 'model.pdparams'))
self.model.set_dict(params, use_structured_name=True)
def enlightening(self,
images: list = None,
paths: list = None,
output_dir: str = './enlightening_result/',
use_gpu: bool = False,
visualization: bool = True):
'''
enlighten images in the low-light scene.
images (list[numpy.ndarray]): data of images, shape of each is [H, W, C], color space must be BGR(read by cv2).
paths (list[str]): paths to images
output_dir (str): the dir to save the results
use_gpu (bool): if True, use gpu to perform the computation, otherwise cpu.
visualization (bool): if True, save results in output_dir.
'''
results = []
paddle.disable_static()
place = 'gpu:0' if use_gpu else 'cpu'
place = paddle.set_device(place)
if images == None and paths == None:
print('No image provided. Please input an image or a image path.')
return
self.model.eval()
if images != None:
for image in images:
image = image[:, :, ::-1]
image = np.expand_dims(np.transpose(image, (2, 0, 1)).astype(np.float32) / 255., 0)
inputtensor = paddle.to_tensor(image)
out, out1 = self.model(inputtensor)
out = out.numpy()[0]
out = (np.transpose(out, (1, 2, 0)) + 1) / 2.0 * 255.0
out = np.clip(out, 0, 255)
out = out.astype('uint8')
results.append(out)
if paths != None:
for path in paths:
image = cv2.imread(path)[:, :, ::-1]
image = np.expand_dims(np.transpose(image, (2, 0, 1)).astype(np.float32) / 255., 0)
inputtensor = paddle.to_tensor(image)
out, out1 = self.model(inputtensor)
out = out.numpy()[0]
out = (np.transpose(out, (1, 2, 0)) + 1) / 2.0 * 255.0
out = np.clip(out, 0, 255)
out = out.astype('uint8')
results.append(out)
if visualization == True:
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
for i, out in enumerate(results):
cv2.imwrite(os.path.join(output_dir, 'output_{}.png'.format(i)), out[:, :, ::-1])
return results
@runnable
def run_cmd(self, argvs: list):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
self.args = self.parser.parse_args(argvs)
results = self.enlightening(paths=[self.args.input_path],
output_dir=self.args.output_dir,
use_gpu=self.args.use_gpu,
visualization=self.args.visualization)
return results
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.enlightening(images=images_decode, **kwargs)
tolist = [result.tolist() for result in results]
return tolist
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu', action='store_true', help="use GPU or not")
self.arg_config_group.add_argument('--output_dir',
type=str,
default='enlightening_result',
help='output directory for saving result.')
self.arg_config_group.add_argument('--visualization', type=bool, default=False, help='save results or not.')
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to input image.")
import base64
import cv2
import numpy as np
def base64_to_cv2(b64str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册