Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
2b076fc5
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
284
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2b076fc5
编写于
4月 12, 2019
作者:
W
wuzewu
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/PaddleHub
into develop
上级
bc6f2d6f
cbfd7d16
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
151 addition
and
51 deletion
+151
-51
demo/ernie-classification/README.md
demo/ernie-classification/README.md
+104
-1
demo/ernie-classification/ernie_tiny_demo.py
demo/ernie-classification/ernie_tiny_demo.py
+35
-0
demo/ernie-classification/question_answering.py
demo/ernie-classification/question_answering.py
+1
-11
demo/ernie-classification/question_matching.py
demo/ernie-classification/question_matching.py
+1
-11
demo/ernie-classification/run_question_matching.sh
demo/ernie-classification/run_question_matching.sh
+1
-1
demo/ernie-classification/run_sentiment_cls.sh
demo/ernie-classification/run_sentiment_cls.sh
+1
-1
demo/ernie-classification/sentiment_cls.py
demo/ernie-classification/sentiment_cls.py
+2
-13
demo/ernie-seq-labeling/run_sequence_labeling.sh
demo/ernie-seq-labeling/run_sequence_labeling.sh
+1
-1
demo/ernie-seq-labeling/sequence_labeling.py
demo/ernie-seq-labeling/sequence_labeling.py
+2
-12
paddlehub/reader/nlp_reader.py
paddlehub/reader/nlp_reader.py
+3
-0
未找到文件。
demo/ernie-classification/README.md
浏览文件 @
2b076fc5
# ERNIE Classification
# ERNIE Classification
本示例
如果使用PaddleHub Finetune API快速的完成Transformer类模型ERNIE或BERT完成文本
分类任务。
本示例
将展示如何使用PaddleHub Finetune API利用ERNIE完成
分类任务。
其中分类任务可以分为两大类
*
单句分类
-
中文情感分析任务 ChnSentiCorp
*
句对分类
-
语义相似度 LCQMC
-
检索式问答任务 NLPCC-DBQA
## 如何开始Finetune
在完成安装PaddlePaddle与PaddleHub后,通过执行脚本
`sh run_sentiment_cls.sh`
即可开始使用ERNIE对ChnSentiCorp数据集进行Finetune。
其中脚本参数说明如下:
```
bash
--batch_size
: 批处理大小,请结合显存情况进行调整,若出现显存不足错误,请调低这一参数值
--weight_decay
:
--checkpoint_dir
: 模型保存路径,PaddleHub会自动保存验证集上表现最好的模型
--num_epoch
: Finetune迭代的轮数
--max_seq_len
: ERNIE模型使用的最大序列长度,最大不能超过512, 若出现显存不足错误,请调低这一参数
```
## 代码步骤
使用PaddleHub Finetune API进行Finetune可以分为一下4个步骤
### Step1: 加载预训练模型
```
python
module
=
hub
.
Module
(
name
=
"ernie"
)
inputs
,
outputs
,
program
=
module
.
context
(
trainable
=
True
,
max_seq_len
=
128
)
```
其中最大序列长度
`max_seq_len`
是可以调整的参数,建议值128,根据任务文本长度不同可以调整该值,但最大不超过512。
如果想尝试BERT模型,例如BERT中文模型,只需要更换Module中的参数即可.
PaddleHub除了ERNIE,还提供以下BERT模型:
BERT模型名 | PaddleHub Module name
---------------------------------- | :------:
BERT-Base, Uncased | bert_uncased_L-12_H-768_A-12
BERT-Large, Uncased | bert_uncased_L-24_H-1024_A-16
BERT-Base, Cased | bert_cased_L-12_H-768_A-12
BERT-Large, Cased | bert_cased_L-24_H-1024_A-16
BERT-Base, Multilingual Cased | bert_multi_cased_L-12_H-768_A-12
BERT-Base, Chinese | bert_chinese_L-12_H-768_A-12
```
python
# 更换name参数即可无缝切换BERT中文模型
module
=
hub
.
Module
(
name
=
"bert_chinese_L-12_H-768_A-12"
)
```
### Step2: 准备数据集并使用ClassifyReader读取数据
```
python
reader
=
hub
.
reader
.
ClassifyReader
(
dataset
=
hub
.
dataset
.
ChnSentiCorp
(),
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
128
)
```
`hub.dataset.ChnSentiCorp()`
会自动从网络下载数据集并解压到用户目录下.paddlehub/dataset目录
`module.get_vaocab_path()`
会返回ERNIE/BERT模型对应的词表
`max_seq_len`
需要与Step1中context接口传入的序列长度保持一致
ClassifyReader中的
`data_generator`
会自动按照模型对应词表对数据进行切词,以迭代器的方式返回ERNIE/BERT所需要的Tensor格式,包括
`input_ids`
,
`position_ids`
,
`segment_id`
与序列对应的mask
`input_mask`
.
### Step3: 构建网络并创建分类迁移任务
```
python
with
fluid
.
program_guard
(
program
):
# NOTE: 必须使用fluid.program_guard接口传入Module返回的预训练模型program
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
'int64'
)
pooled_output
=
outputs
[
"pooled_output"
]
feed_list
=
[
inputs
[
"input_ids"
].
name
,
inputs
[
"position_ids"
].
name
,
inputs
[
"segment_ids"
].
name
,
inputs
[
"input_mask"
].
name
,
label
.
name
]
cls_task
=
hub
.
create_text_classification_task
(
feature
=
pooled_output
,
label
=
label
,
num_classes
=
reader
.
get_num_labels
())
```
**NOTE:**
基于预训练模型的迁移学习网络搭建,必须在
`with fluid.program_gurad()`
作用域内组件网络
1.
`outputs["pooled_output"]`
返回了ERNIE/BERT模型对应的[CLS]向量,可以用于句子或句对的特征表达。
2.
`feed_list`
中的inputs参数指名了ERNIE/BERT中的输入tensor,以及label,与ClassifyReader返回的结果一致。
3.
`create_text_classification_task`
通过输入特征,label与迁移的类别数,可以生成适用于文本分类的迁移任务
`cls_task`
### Step4:选择优化策略并开始Finetune
```
python
strategy
=
hub
.
BERTFinetuneStrategy
(
weight_decay
=
0.01
,
learning_rate
=
5e-5
,
warmup_strategy
=
"linear_warmup_decay"
,
)
config
=
hub
.
RunConfig
(
use_cuda
=
True
,
num_epoch
=
3
,
batch_size
=
32
,
strategy
=
strategy
)
hub
.
finetune_and_eval
(
task
=
cls_task
,
data_reader
=
reader
,
feed_list
=
feed_list
,
config
=
config
)
```
针对ERNIE与BERT类任务,PaddleHub封装了适合这一任务的迁移学习优化策略。用户可以通过配置学习率,权重
demo/ernie-classification/ernie_tiny_demo.py
0 → 100644
浏览文件 @
2b076fc5
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
module
=
hub
.
Module
(
name
=
"ernie"
)
inputs
,
outputs
,
program
=
module
.
context
(
trainable
=
True
,
max_seq_len
=
128
)
reader
=
hub
.
reader
.
ClassifyReader
(
dataset
=
hub
.
dataset
.
ChnSentiCorp
(),
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
128
)
with
fluid
.
program_guard
(
program
):
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
'int64'
)
pooled_output
=
outputs
[
"pooled_output"
]
feed_list
=
[
inputs
[
"input_ids"
].
name
,
inputs
[
"position_ids"
].
name
,
inputs
[
"segment_ids"
].
name
,
inputs
[
"input_mask"
].
name
,
label
.
name
]
cls_task
=
hub
.
create_text_classification_task
(
pooled_output
,
label
,
num_classes
=
reader
.
get_num_labels
())
strategy
=
hub
.
BERTFinetuneStrategy
(
weight_decay
=
0.01
,
learning_rate
=
5e-5
,
warmup_strategy
=
"linear_warmup_decay"
,
)
config
=
hub
.
RunConfig
(
use_cuda
=
True
,
num_epoch
=
3
,
batch_size
=
32
,
strategy
=
strategy
)
hub
.
finetune_and_eval
(
task
=
cls_task
,
data_reader
=
reader
,
feed_list
=
feed_list
,
config
=
config
)
demo/ernie-classification/question_answering.py
浏览文件 @
2b076fc5
...
@@ -13,16 +13,8 @@
...
@@ -13,16 +13,8 @@
# limitations under the License.
# limitations under the License.
"""Finetuning on classification task """
"""Finetuning on classification task """
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
argparse
import
argparse
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
import
paddlehub
as
hub
...
@@ -30,7 +22,6 @@ import paddlehub as hub
...
@@ -30,7 +22,6 @@ import paddlehub as hub
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--hub_module_dir"
,
type
=
str
,
default
=
None
,
help
=
"PaddleHub module directory"
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--data_dir"
,
type
=
str
,
default
=
None
,
help
=
"Path to training data."
)
parser
.
add_argument
(
"--data_dir"
,
type
=
str
,
default
=
None
,
help
=
"Path to training data."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
...
@@ -46,9 +37,8 @@ if __name__ == '__main__':
...
@@ -46,9 +37,8 @@ if __name__ == '__main__':
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
# Step2: Download dataset and use ClassifyReader to read dataset
# Step2: Download dataset and use ClassifyReader to read dataset
dataset
=
hub
.
dataset
.
NLPCC_DBQA
()
reader
=
hub
.
reader
.
ClassifyReader
(
reader
=
hub
.
reader
.
ClassifyReader
(
dataset
=
dataset
,
dataset
=
hub
.
dataset
.
NLPCC_DBQA
()
,
vocab_path
=
module
.
get_vocab_path
(),
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
args
.
max_seq_len
)
max_seq_len
=
args
.
max_seq_len
)
num_labels
=
len
(
reader
.
get_labels
())
num_labels
=
len
(
reader
.
get_labels
())
...
...
demo/ernie-classification/question_matching.py
浏览文件 @
2b076fc5
...
@@ -13,16 +13,8 @@
...
@@ -13,16 +13,8 @@
# limitations under the License.
# limitations under the License.
"""Finetuning on classification task """
"""Finetuning on classification task """
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
argparse
import
argparse
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
import
paddlehub
as
hub
...
@@ -30,7 +22,6 @@ import paddlehub as hub
...
@@ -30,7 +22,6 @@ import paddlehub as hub
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--hub_module_dir"
,
type
=
str
,
default
=
None
,
help
=
"PaddleHub module directory"
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--data_dir"
,
type
=
str
,
default
=
None
,
help
=
"Path to training data."
)
parser
.
add_argument
(
"--data_dir"
,
type
=
str
,
default
=
None
,
help
=
"Path to training data."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
...
@@ -46,9 +37,8 @@ if __name__ == '__main__':
...
@@ -46,9 +37,8 @@ if __name__ == '__main__':
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
# Step2: Download dataset and use ClassifyReader to read dataset
# Step2: Download dataset and use ClassifyReader to read dataset
dataset
=
hub
.
dataset
.
LCQMC
()
reader
=
hub
.
reader
.
ClassifyReader
(
reader
=
hub
.
reader
.
ClassifyReader
(
dataset
=
dataset
,
dataset
=
hub
.
dataset
.
LCQMC
()
,
vocab_path
=
module
.
get_vocab_path
(),
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
args
.
max_seq_len
)
max_seq_len
=
args
.
max_seq_len
)
num_labels
=
len
(
reader
.
get_labels
())
num_labels
=
len
(
reader
.
get_labels
())
...
...
demo/ernie-classification/run_question_matching.sh
浏览文件 @
2b076fc5
export
CUDA_VISIBLE_DEVICES
=
0
export
CUDA_VISIBLE_DEVICES
=
5
CKPT_DIR
=
"./ckpt_question_matching"
CKPT_DIR
=
"./ckpt_question_matching"
python
-u
question_matching.py
\
python
-u
question_matching.py
\
...
...
demo/ernie-classification/run_sentiment_cls.sh
浏览文件 @
2b076fc5
export
CUDA_VISIBLE_DEVICES
=
3
export
CUDA_VISIBLE_DEVICES
=
5
CKPT_DIR
=
"./ckpt_sentiment_cls"
CKPT_DIR
=
"./ckpt_sentiment_cls"
python
-u
sentiment_cls.py
\
python
-u
sentiment_cls.py
\
...
...
demo/ernie-classification/sentiment_cls.py
浏览文件 @
2b076fc5
...
@@ -13,16 +13,8 @@
...
@@ -13,16 +13,8 @@
# limitations under the License.
# limitations under the License.
"""Finetuning on classification task """
"""Finetuning on classification task """
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
argparse
import
argparse
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
import
paddlehub
as
hub
...
@@ -30,7 +22,6 @@ import paddlehub as hub
...
@@ -30,7 +22,6 @@ import paddlehub as hub
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--hub_module_dir"
,
type
=
str
,
default
=
None
,
help
=
"PaddleHub module directory"
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--data_dir"
,
type
=
str
,
default
=
None
,
help
=
"Path to training data."
)
parser
.
add_argument
(
"--data_dir"
,
type
=
str
,
default
=
None
,
help
=
"Path to training data."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
...
@@ -46,12 +37,10 @@ if __name__ == '__main__':
...
@@ -46,12 +37,10 @@ if __name__ == '__main__':
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
# Step2: Download dataset and use ClassifyReader to read dataset
# Step2: Download dataset and use ClassifyReader to read dataset
dataset
=
hub
.
dataset
.
ChnSentiCorp
()
reader
=
hub
.
reader
.
ClassifyReader
(
reader
=
hub
.
reader
.
ClassifyReader
(
dataset
=
dataset
,
dataset
=
hub
.
dataset
.
ChnSentiCorp
()
,
vocab_path
=
module
.
get_vocab_path
(),
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
args
.
max_seq_len
)
max_seq_len
=
args
.
max_seq_len
)
num_labels
=
len
(
reader
.
get_labels
())
# Step3: construct transfer learning network
# Step3: construct transfer learning network
with
fluid
.
program_guard
(
program
):
with
fluid
.
program_guard
(
program
):
...
@@ -69,7 +58,7 @@ if __name__ == '__main__':
...
@@ -69,7 +58,7 @@ if __name__ == '__main__':
]
]
# Define a classfication finetune task by PaddleHub's API
# Define a classfication finetune task by PaddleHub's API
cls_task
=
hub
.
create_text_classification_task
(
cls_task
=
hub
.
create_text_classification_task
(
pooled_output
,
label
,
num_classes
=
num_labels
)
pooled_output
,
label
,
num_classes
=
reader
.
get_num_labels
()
)
# Step4: Select finetune strategy, setup config and finetune
# Step4: Select finetune strategy, setup config and finetune
strategy
=
hub
.
BERTFinetuneStrategy
(
strategy
=
hub
.
BERTFinetuneStrategy
(
...
...
demo/ernie-seq-labeling/run_sequence_labeling.sh
浏览文件 @
2b076fc5
export
CUDA_VISIBLE_DEVICES
=
0
export
CUDA_VISIBLE_DEVICES
=
6
CKPT_DIR
=
"./ckpt_sequence_labeling"
CKPT_DIR
=
"./ckpt_sequence_labeling"
...
...
demo/ernie-seq-labeling/sequence_labeling.py
浏览文件 @
2b076fc5
...
@@ -13,16 +13,8 @@
...
@@ -13,16 +13,8 @@
# limitations under the License.
# limitations under the License.
"""Finetuning on sequence labeling task."""
"""Finetuning on sequence labeling task."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
argparse
import
argparse
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
import
paddlehub
as
hub
...
@@ -30,7 +22,6 @@ import paddlehub as hub
...
@@ -30,7 +22,6 @@ import paddlehub as hub
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--hub_module_dir"
,
type
=
str
,
default
=
None
,
help
=
"PaddleHub module directory"
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
parser
.
add_argument
(
"--max_seq_len"
,
type
=
int
,
default
=
512
,
help
=
"Number of words of the longest seqence."
)
parser
.
add_argument
(
"--max_seq_len"
,
type
=
int
,
default
=
512
,
help
=
"Number of words of the longest seqence."
)
...
@@ -46,9 +37,8 @@ if __name__ == '__main__':
...
@@ -46,9 +37,8 @@ if __name__ == '__main__':
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
# Step2: Download dataset and use SequenceLabelReader to read dataset
# Step2: Download dataset and use SequenceLabelReader to read dataset
dataset
=
hub
.
dataset
.
MSRA_NER
()
reader
=
hub
.
reader
.
SequenceLabelReader
(
reader
=
hub
.
reader
.
SequenceLabelReader
(
dataset
=
dataset
,
dataset
=
hub
.
dataset
.
MSRA_NER
()
,
vocab_path
=
module
.
get_vocab_path
(),
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
args
.
max_seq_len
)
max_seq_len
=
args
.
max_seq_len
)
...
@@ -60,7 +50,6 @@ if __name__ == '__main__':
...
@@ -60,7 +50,6 @@ if __name__ == '__main__':
name
=
"label"
,
shape
=
[
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
name
=
"label"
,
shape
=
[
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
seq_len
=
fluid
.
layers
.
data
(
name
=
"seq_len"
,
shape
=
[
1
],
dtype
=
'int64'
)
seq_len
=
fluid
.
layers
.
data
(
name
=
"seq_len"
,
shape
=
[
1
],
dtype
=
'int64'
)
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
# Use "sequence_output" for token-level output.
sequence_output
=
outputs
[
"sequence_output"
]
sequence_output
=
outputs
[
"sequence_output"
]
...
@@ -93,6 +82,7 @@ if __name__ == '__main__':
...
@@ -93,6 +82,7 @@ if __name__ == '__main__':
batch_size
=
args
.
batch_size
,
batch_size
=
args
.
batch_size
,
checkpoint_dir
=
args
.
checkpoint_dir
,
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
strategy
)
strategy
=
strategy
)
# Finetune and evaluate model by PaddleHub's API
# Finetune and evaluate model by PaddleHub's API
# will finish training, evaluation, testing, save model automatically
# will finish training, evaluation, testing, save model automatically
hub
.
finetune_and_eval
(
hub
.
finetune_and_eval
(
...
...
paddlehub/reader/nlp_reader.py
浏览文件 @
2b076fc5
...
@@ -80,6 +80,9 @@ class BaseReader(object):
...
@@ -80,6 +80,9 @@ class BaseReader(object):
"""Gets the list of labels for this data set."""
"""Gets the list of labels for this data set."""
return
self
.
dataset
.
get_labels
()
return
self
.
dataset
.
get_labels
()
def
get_num_labels
(
self
):
return
len
(
self
.
dataset
.
get_labels
())
def
get_train_progress
(
self
):
def
get_train_progress
(
self
):
"""Gets progress for training phase."""
"""Gets progress for training phase."""
return
self
.
current_example
,
self
.
current_epoch
return
self
.
current_example
,
self
.
current_epoch
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录