提交 2b076fc5 编写于 作者: W wuzewu

Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleHub into develop

# ERNIE Classification # ERNIE Classification
本示例如果使用PaddleHub Finetune API快速的完成Transformer类模型ERNIE或BERT完成文本分类任务。 本示例将展示如何使用PaddleHub Finetune API利用ERNIE完成分类任务。
其中分类任务可以分为两大类
* 单句分类
- 中文情感分析任务 ChnSentiCorp
* 句对分类
- 语义相似度 LCQMC
- 检索式问答任务 NLPCC-DBQA
## 如何开始Finetune
在完成安装PaddlePaddle与PaddleHub后,通过执行脚本`sh run_sentiment_cls.sh`即可开始使用ERNIE对ChnSentiCorp数据集进行Finetune。
其中脚本参数说明如下:
```bash
--batch_size: 批处理大小,请结合显存情况进行调整,若出现显存不足错误,请调低这一参数值
--weight_decay:
--checkpoint_dir: 模型保存路径,PaddleHub会自动保存验证集上表现最好的模型
--num_epoch: Finetune迭代的轮数
--max_seq_len: ERNIE模型使用的最大序列长度,最大不能超过512, 若出现显存不足错误,请调低这一参数
```
## 代码步骤
使用PaddleHub Finetune API进行Finetune可以分为一下4个步骤
### Step1: 加载预训练模型
```python
module = hub.Module(name="ernie")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
```
其中最大序列长度`max_seq_len`是可以调整的参数,建议值128,根据任务文本长度不同可以调整该值,但最大不超过512。
如果想尝试BERT模型,例如BERT中文模型,只需要更换Module中的参数即可.
PaddleHub除了ERNIE,还提供以下BERT模型:
BERT模型名 | PaddleHub Module name
---------------------------------- | :------:
BERT-Base, Uncased | bert_uncased_L-12_H-768_A-12
BERT-Large, Uncased | bert_uncased_L-24_H-1024_A-16
BERT-Base, Cased | bert_cased_L-12_H-768_A-12
BERT-Large, Cased | bert_cased_L-24_H-1024_A-16
BERT-Base, Multilingual Cased | bert_multi_cased_L-12_H-768_A-12
BERT-Base, Chinese | bert_chinese_L-12_H-768_A-12
```python
# 更换name参数即可无缝切换BERT中文模型
module = hub.Module(name="bert_chinese_L-12_H-768_A-12")
```
### Step2: 准备数据集并使用ClassifyReader读取数据
```python
reader = hub.reader.ClassifyReader(
dataset=hub.dataset.ChnSentiCorp(),
vocab_path=module.get_vocab_path(),
max_seq_len=128)
```
`hub.dataset.ChnSentiCorp()` 会自动从网络下载数据集并解压到用户目录下.paddlehub/dataset目录
`module.get_vaocab_path()` 会返回ERNIE/BERT模型对应的词表
`max_seq_len`需要与Step1中context接口传入的序列长度保持一致
ClassifyReader中的`data_generator`会自动按照模型对应词表对数据进行切词,以迭代器的方式返回ERNIE/BERT所需要的Tensor格式,包括`input_ids``position_ids``segment_id`与序列对应的mask `input_mask`.
### Step3: 构建网络并创建分类迁移任务
```python
with fluid.program_guard(program): # NOTE: 必须使用fluid.program_guard接口传入Module返回的预训练模型program
label = fluid.layers.data(name="label", shape=[1], dtype='int64')
pooled_output = outputs["pooled_output"]
feed_list = [
inputs["input_ids"].name, inputs["position_ids"].name,
inputs["segment_ids"].name, inputs["input_mask"].name, label.name
]
cls_task = hub.create_text_classification_task(
feature=pooled_output, label=label, num_classes=reader.get_num_labels())
```
**NOTE:** 基于预训练模型的迁移学习网络搭建,必须在`with fluid.program_gurad()`作用域内组件网络
1. `outputs["pooled_output"]`返回了ERNIE/BERT模型对应的[CLS]向量,可以用于句子或句对的特征表达。
2. `feed_list`中的inputs参数指名了ERNIE/BERT中的输入tensor,以及label,与ClassifyReader返回的结果一致。
3. `create_text_classification_task`通过输入特征,label与迁移的类别数,可以生成适用于文本分类的迁移任务`cls_task`
### Step4:选择优化策略并开始Finetune
```python
strategy = hub.BERTFinetuneStrategy(
weight_decay=0.01,
learning_rate=5e-5,
warmup_strategy="linear_warmup_decay",
)
config = hub.RunConfig(use_cuda=True, num_epoch=3, batch_size=32, strategy=strategy)
hub.finetune_and_eval(task=cls_task, data_reader=reader, feed_list=feed_list, config=config)
```
针对ERNIE与BERT类任务,PaddleHub封装了适合这一任务的迁移学习优化策略。用户可以通过配置学习率,权重
import paddle.fluid as fluid
import paddlehub as hub
module = hub.Module(name="ernie")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
reader = hub.reader.ClassifyReader(
dataset=hub.dataset.ChnSentiCorp(),
vocab_path=module.get_vocab_path(),
max_seq_len=128)
with fluid.program_guard(program):
label = fluid.layers.data(name="label", shape=[1], dtype='int64')
pooled_output = outputs["pooled_output"]
feed_list = [
inputs["input_ids"].name, inputs["position_ids"].name,
inputs["segment_ids"].name, inputs["input_mask"].name, label.name
]
cls_task = hub.create_text_classification_task(
pooled_output, label, num_classes=reader.get_num_labels())
strategy = hub.BERTFinetuneStrategy(
weight_decay=0.01,
learning_rate=5e-5,
warmup_strategy="linear_warmup_decay",
)
config = hub.RunConfig(
use_cuda=True, num_epoch=3, batch_size=32, strategy=strategy)
hub.finetune_and_eval(
task=cls_task, data_reader=reader, feed_list=feed_list, config=config)
...@@ -13,16 +13,8 @@ ...@@ -13,16 +13,8 @@
# limitations under the License. # limitations under the License.
"""Finetuning on classification task """ """Finetuning on classification task """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import argparse import argparse
import numpy as np
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddlehub as hub import paddlehub as hub
...@@ -30,7 +22,6 @@ import paddlehub as hub ...@@ -30,7 +22,6 @@ import paddlehub as hub
parser = argparse.ArgumentParser(__doc__) parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.") parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.") parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--hub_module_dir", type=str, default=None, help="PaddleHub module directory")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.") parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.") parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
...@@ -46,9 +37,8 @@ if __name__ == '__main__': ...@@ -46,9 +37,8 @@ if __name__ == '__main__':
trainable=True, max_seq_len=args.max_seq_len) trainable=True, max_seq_len=args.max_seq_len)
# Step2: Download dataset and use ClassifyReader to read dataset # Step2: Download dataset and use ClassifyReader to read dataset
dataset = hub.dataset.NLPCC_DBQA()
reader = hub.reader.ClassifyReader( reader = hub.reader.ClassifyReader(
dataset=dataset, dataset=hub.dataset.NLPCC_DBQA(),
vocab_path=module.get_vocab_path(), vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len) max_seq_len=args.max_seq_len)
num_labels = len(reader.get_labels()) num_labels = len(reader.get_labels())
......
...@@ -13,16 +13,8 @@ ...@@ -13,16 +13,8 @@
# limitations under the License. # limitations under the License.
"""Finetuning on classification task """ """Finetuning on classification task """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import argparse import argparse
import numpy as np
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddlehub as hub import paddlehub as hub
...@@ -30,7 +22,6 @@ import paddlehub as hub ...@@ -30,7 +22,6 @@ import paddlehub as hub
parser = argparse.ArgumentParser(__doc__) parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.") parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.") parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--hub_module_dir", type=str, default=None, help="PaddleHub module directory")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.") parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.") parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
...@@ -46,9 +37,8 @@ if __name__ == '__main__': ...@@ -46,9 +37,8 @@ if __name__ == '__main__':
trainable=True, max_seq_len=args.max_seq_len) trainable=True, max_seq_len=args.max_seq_len)
# Step2: Download dataset and use ClassifyReader to read dataset # Step2: Download dataset and use ClassifyReader to read dataset
dataset = hub.dataset.LCQMC()
reader = hub.reader.ClassifyReader( reader = hub.reader.ClassifyReader(
dataset=dataset, dataset=hub.dataset.LCQMC(),
vocab_path=module.get_vocab_path(), vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len) max_seq_len=args.max_seq_len)
num_labels = len(reader.get_labels()) num_labels = len(reader.get_labels())
......
export CUDA_VISIBLE_DEVICES=0 export CUDA_VISIBLE_DEVICES=5
CKPT_DIR="./ckpt_question_matching" CKPT_DIR="./ckpt_question_matching"
python -u question_matching.py \ python -u question_matching.py \
......
export CUDA_VISIBLE_DEVICES=3 export CUDA_VISIBLE_DEVICES=5
CKPT_DIR="./ckpt_sentiment_cls" CKPT_DIR="./ckpt_sentiment_cls"
python -u sentiment_cls.py \ python -u sentiment_cls.py \
......
...@@ -13,16 +13,8 @@ ...@@ -13,16 +13,8 @@
# limitations under the License. # limitations under the License.
"""Finetuning on classification task """ """Finetuning on classification task """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import argparse import argparse
import numpy as np
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddlehub as hub import paddlehub as hub
...@@ -30,7 +22,6 @@ import paddlehub as hub ...@@ -30,7 +22,6 @@ import paddlehub as hub
parser = argparse.ArgumentParser(__doc__) parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.") parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.") parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--hub_module_dir", type=str, default=None, help="PaddleHub module directory")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.") parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.") parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
...@@ -46,12 +37,10 @@ if __name__ == '__main__': ...@@ -46,12 +37,10 @@ if __name__ == '__main__':
trainable=True, max_seq_len=args.max_seq_len) trainable=True, max_seq_len=args.max_seq_len)
# Step2: Download dataset and use ClassifyReader to read dataset # Step2: Download dataset and use ClassifyReader to read dataset
dataset = hub.dataset.ChnSentiCorp()
reader = hub.reader.ClassifyReader( reader = hub.reader.ClassifyReader(
dataset=dataset, dataset=hub.dataset.ChnSentiCorp(),
vocab_path=module.get_vocab_path(), vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len) max_seq_len=args.max_seq_len)
num_labels = len(reader.get_labels())
# Step3: construct transfer learning network # Step3: construct transfer learning network
with fluid.program_guard(program): with fluid.program_guard(program):
...@@ -69,7 +58,7 @@ if __name__ == '__main__': ...@@ -69,7 +58,7 @@ if __name__ == '__main__':
] ]
# Define a classfication finetune task by PaddleHub's API # Define a classfication finetune task by PaddleHub's API
cls_task = hub.create_text_classification_task( cls_task = hub.create_text_classification_task(
pooled_output, label, num_classes=num_labels) pooled_output, label, num_classes=reader.get_num_labels())
# Step4: Select finetune strategy, setup config and finetune # Step4: Select finetune strategy, setup config and finetune
strategy = hub.BERTFinetuneStrategy( strategy = hub.BERTFinetuneStrategy(
......
export CUDA_VISIBLE_DEVICES=0 export CUDA_VISIBLE_DEVICES=6
CKPT_DIR="./ckpt_sequence_labeling" CKPT_DIR="./ckpt_sequence_labeling"
......
...@@ -13,16 +13,8 @@ ...@@ -13,16 +13,8 @@
# limitations under the License. # limitations under the License.
"""Finetuning on sequence labeling task.""" """Finetuning on sequence labeling task."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import argparse import argparse
import numpy as np
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddlehub as hub import paddlehub as hub
...@@ -30,7 +22,6 @@ import paddlehub as hub ...@@ -30,7 +22,6 @@ import paddlehub as hub
parser = argparse.ArgumentParser(__doc__) parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.") parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.") parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--hub_module_dir", type=str, default=None, help="PaddleHub module directory")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.") parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
...@@ -46,9 +37,8 @@ if __name__ == '__main__': ...@@ -46,9 +37,8 @@ if __name__ == '__main__':
trainable=True, max_seq_len=args.max_seq_len) trainable=True, max_seq_len=args.max_seq_len)
# Step2: Download dataset and use SequenceLabelReader to read dataset # Step2: Download dataset and use SequenceLabelReader to read dataset
dataset = hub.dataset.MSRA_NER()
reader = hub.reader.SequenceLabelReader( reader = hub.reader.SequenceLabelReader(
dataset=dataset, dataset=hub.dataset.MSRA_NER(),
vocab_path=module.get_vocab_path(), vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len) max_seq_len=args.max_seq_len)
...@@ -60,7 +50,6 @@ if __name__ == '__main__': ...@@ -60,7 +50,6 @@ if __name__ == '__main__':
name="label", shape=[args.max_seq_len, 1], dtype='int64') name="label", shape=[args.max_seq_len, 1], dtype='int64')
seq_len = fluid.layers.data(name="seq_len", shape=[1], dtype='int64') seq_len = fluid.layers.data(name="seq_len", shape=[1], dtype='int64')
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output. # Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"] sequence_output = outputs["sequence_output"]
...@@ -93,6 +82,7 @@ if __name__ == '__main__': ...@@ -93,6 +82,7 @@ if __name__ == '__main__':
batch_size=args.batch_size, batch_size=args.batch_size,
checkpoint_dir=args.checkpoint_dir, checkpoint_dir=args.checkpoint_dir,
strategy=strategy) strategy=strategy)
# Finetune and evaluate model by PaddleHub's API # Finetune and evaluate model by PaddleHub's API
# will finish training, evaluation, testing, save model automatically # will finish training, evaluation, testing, save model automatically
hub.finetune_and_eval( hub.finetune_and_eval(
......
...@@ -80,6 +80,9 @@ class BaseReader(object): ...@@ -80,6 +80,9 @@ class BaseReader(object):
"""Gets the list of labels for this data set.""" """Gets the list of labels for this data set."""
return self.dataset.get_labels() return self.dataset.get_labels()
def get_num_labels(self):
return len(self.dataset.get_labels())
def get_train_progress(self): def get_train_progress(self):
"""Gets progress for training phase.""" """Gets progress for training phase."""
return self.current_example, self.current_epoch return self.current_example, self.current_epoch
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册