Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
217ed14f
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
281
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
217ed14f
编写于
1月 02, 2019
作者:
Z
Zeyu Chen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add git ignore
上级
83aba534
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
449 addition
and
21 deletion
+449
-21
.gitignore
.gitignore
+115
-0
paddle_hub/module.py
paddle_hub/module.py
+17
-21
paddle_hub/test_module.py
paddle_hub/test_module.py
+32
-0
paddle_hub/utils.py
paddle_hub/utils.py
+22
-0
test_export_n_load_module.py
test_export_n_load_module.py
+263
-0
未找到文件。
.gitignore
0 → 100644
浏览文件 @
217ed14f
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
paddle_hub/module.py
浏览文件 @
217ed14f
...
...
@@ -17,21 +17,19 @@ from __future__ import division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
paddle_hub
as
hub
import
numpy
as
np
import
tempfile
import
os
from
collections
import
defaultdict
from
paddle_hub.
downloader
import
download_and_uncompress
from
downloader
import
download_and_uncompress
__all__
=
[
"Module"
,
"Module
Spe
c"
]
__all__
=
[
"Module"
,
"Module
Des
c"
]
class
Module
(
object
):
def
__init__
(
self
,
module_url
):
# donwload module
#module_dir = downloader.download_and_uncompress(module_url)
module_dir
=
download_and_uncompress
(
module_url
)
# load paddle inference model
...
...
@@ -49,7 +47,9 @@ class Module(object):
print
(
self
.
fetch_targets
)
# load assets
# self._load_assets(module_dir)
self
.
dict
=
defaultdict
(
int
)
self
.
dict
.
setdefault
(
0
)
self
.
_load_assets
(
module_dir
)
#TODO(ZeyuChen): Need add register more signature to execute different
# implmentation
...
...
@@ -60,7 +60,7 @@ class Module(object):
# if it's NLP word embedding task, then do words preprocessing
# if it's image classification or image feature task do the other works
# if it's
# if it's
word_ids_lod_tensor
=
self
.
_process_input
(
inputs
)
np_words_id
=
np
.
array
(
word_ids_lod_tensor
)
print
(
"word_ids_lod_tensor
\n
"
,
np_words_id
)
...
...
@@ -71,9 +71,9 @@ class Module(object):
fetch_list
=
self
.
fetch_targets
,
return_numpy
=
False
)
# return_numpy=Flase is important
print
(
self
.
feed_target_names
)
print
(
self
.
fetch_targets
)
#
np_result = np.array(results[0])
print
(
"module fetch_target_names"
,
self
.
feed_target_names
)
print
(
"module fetch_targets"
,
self
.
fetch_targets
)
np_result
=
np
.
array
(
results
[
0
])
return
np_result
...
...
@@ -128,8 +128,6 @@ class Module(object):
# load assets folder
def
_load_assets
(
self
,
module_dir
):
self
.
dict
=
defaultdict
(
int
)
self
.
dict
.
setdefault
(
0
)
assets_dir
=
os
.
path
.
join
(
module_dir
,
"assets"
)
tokens_path
=
os
.
path
.
join
(
assets_dir
,
"tokens.txt"
)
word_id
=
0
...
...
@@ -153,11 +151,6 @@ class Module(object):
os
.
makedirs
(
path
)
class
ModuleImpl
(
object
):
def
get_signature_name
():
pass
class
ModuleDesc
(
object
):
def
__init__
(
self
):
pass
...
...
@@ -165,22 +158,25 @@ class ModuleDesc(object):
@
staticmethod
def
_mkdir
(
path
):
if
not
os
.
path
.
exists
(
path
):
print
(
"mkdir"
,
path
)
os
.
makedirs
(
path
)
@
staticmethod
def
save_dict
(
path
,
word_dict
,
dict_name
=
"dict.txt"
):
def
save_dict
(
path
,
word_dict
,
dict_name
):
""" Save dictionary for NLP module
"""
ModuleDesc
.
_mkdir
(
path
)
with
open
(
os
.
path
.
join
(
path
,
"tokens.txt"
),
"w"
)
as
fo
:
with
open
(
os
.
path
.
join
(
path
,
dict_name
),
"w"
)
as
fo
:
print
(
"tokens.txt path"
,
os
.
path
.
join
(
path
,
"tokens.txt"
))
dict_str
=
"
\n
"
.
join
(
word_dict
)
fo
.
write
(
dict_str
)
@
staticmethod
def
save_module_dict
(
module_path
,
word_dict
):
def
save_module_dict
(
module_path
,
word_dict
,
dict_name
=
"dict.txt"
):
""" Save dictionary for NLP module
"""
assets_path
=
os
.
path
.
join
(
module_path
,
"assets"
)
print
(
"save_module_dict"
,
assets_path
)
ModuleDesc
.
save_dict
(
assets_path
,
word_dict
)
ModuleDesc
.
save_dict
(
assets_path
,
word_dict
,
dict_name
)
pass
...
...
paddle_hub/test_module.py
0 → 100644
浏览文件 @
217ed14f
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
module
import
*
class
TestModule
(
unittest
.
TestCase
):
def
test_word2vec_module_usage
(
self
):
module_link
=
"http://paddlehub.cdn.bcebos.com/word2vec/w2v_saved_inference_module.tar.gz"
module
=
Module
(
module_link
)
inputs
=
[[
"it"
,
"is"
,
"new"
],
[
"hello"
,
"world"
]]
tensor
=
module
.
_process_input
(
inputs
)
print
(
tensor
)
result
=
module
(
inputs
)
print
(
result
)
if
__name__
==
"__main__"
:
unittest
.
main
()
paddle_hub/utils.py
0 → 100644
浏览文件 @
217ed14f
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[
"mkdir"
]
def
mkdir
(
path
):
""" the same as the shell command mkdir -p "
"""
if
not
os
.
path
.
exists
(
path
):
os
.
makedirs
(
path
)
test_export_n_load_module.py
0 → 100644
浏览文件 @
217ed14f
# coding: utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle
import
paddle_hub
as
hub
import
unittest
import
os
EMBED_SIZE
=
16
HIDDEN_SIZE
=
256
N
=
5
BATCH_SIZE
=
64
PASS_NUM
=
1
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
data
=
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
)
_MOCK_DATA
=
[[
1
,
2
,
3
,
4
,
5
],
[
6
,
7
,
8
,
9
,
10
]]
def
mock_data
():
for
d
in
_MOCK_DATA
:
yield
d
#batch_reader = paddle.batch(mock_data, BATCH_SIZE)
batch_reader
=
paddle
.
batch
(
data
,
BATCH_SIZE
)
batch_size
=
0
for
d
in
batch_reader
():
batch_size
+=
1
print
(
"imikolov simple dataset batch_size ="
,
batch_size
)
def
module_fn
(
trainable
=
False
):
# create word input
words
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
lod_level
=
1
,
dtype
=
"int64"
)
# create embedding
# emb_name = "{}:embedding".format(module_scope)
emb_name
=
"embedding"
emb_param_attr
=
fluid
.
ParamAttr
(
name
=
emb_name
,
trainable
=
trainable
)
word_emb
=
fluid
.
layers
.
embedding
(
input
=
words
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
True
,
param_attr
=
emb_param_attr
)
# return feeder and fetch_list
return
words
,
word_emb
def
word2vec
(
words
,
is_sparse
,
trainable
=
True
):
emb_param_attr
=
fluid
.
ParamAttr
(
name
=
"embedding"
,
trainable
=
trainable
)
embed_first
=
fluid
.
layers
.
embedding
(
input
=
words
[
0
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
emb_param_attr
)
embed_second
=
fluid
.
layers
.
embedding
(
input
=
words
[
1
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
emb_param_attr
)
embed_third
=
fluid
.
layers
.
embedding
(
input
=
words
[
2
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
emb_param_attr
)
embed_fourth
=
fluid
.
layers
.
embedding
(
input
=
words
[
3
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
emb_param_attr
)
concat_emb
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_fourth
],
axis
=
1
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
concat_emb
,
size
=
HIDDEN_SIZE
,
act
=
'sigmoid'
)
predict_word
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
)
# declare later than predict word
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
next_word
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
return
predict_word
,
avg_cost
def
train
(
use_cuda
=
False
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
first_word
=
fluid
.
layers
.
data
(
name
=
'firstw'
,
shape
=
[
1
],
dtype
=
'int64'
)
second_word
=
fluid
.
layers
.
data
(
name
=
'secondw'
,
shape
=
[
1
],
dtype
=
'int64'
)
third_word
=
fluid
.
layers
.
data
(
name
=
'thirdw'
,
shape
=
[
1
],
dtype
=
'int64'
)
forth_word
=
fluid
.
layers
.
data
(
name
=
'fourthw'
,
shape
=
[
1
],
dtype
=
'int64'
)
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
word_list
=
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
]
predict_word
,
avg_cost
=
word2vec
(
word_list
,
is_sparse
=
True
)
main_program
=
fluid
.
default_main_program
()
startup_program
=
fluid
.
default_startup_program
()
sgd_optimizer
=
fluid
.
optimizer
.
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd_optimizer
.
minimize
(
avg_cost
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
# initialization
# fluid.io.load_vars(
# executor=exe,
# dirname="./w2v_model",
# vars=[main_program.global_block().var("embedding")])
# 也可使用predicate方式搜索变量
step
=
0
for
epoch
in
range
(
0
,
PASS_NUM
):
for
mini_batch
in
batch_reader
():
# print("mini_batch", mini_batch)
# 定义输入变量
feed_var_list
=
[
main_program
.
global_block
().
var
(
"firstw"
),
main_program
.
global_block
().
var
(
"secondw"
),
main_program
.
global_block
().
var
(
"thirdw"
),
main_program
.
global_block
().
var
(
"fourthw"
),
main_program
.
global_block
().
var
(
"nextw"
)
]
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
place
)
cost
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
mini_batch
),
fetch_list
=
[
avg_cost
])
step
+=
1
if
step
%
100
==
0
:
print
(
"Epoch={} Step={} Cost={}"
.
format
(
epoch
,
step
,
cost
[
0
]))
model_dir
=
"./w2v_model"
# save part of model
var_list_to_saved
=
[
main_program
.
global_block
().
var
(
"embedding"
)]
print
(
"saving model to %s"
%
model_dir
)
fluid
.
io
.
save_vars
(
executor
=
exe
,
dirname
=
model_dir
+
"_save_vars"
,
vars
=
var_list_to_saved
)
# save the whole model
fluid
.
io
.
save_persistables
(
executor
=
exe
,
dirname
=
model_dir
+
"_save_persistables"
)
saved_model_path
=
"w2v_saved_inference_model"
# save inference model including feed and fetch variable info
fluid
.
io
.
save_inference_model
(
dirname
=
saved_model_path
,
feeded_var_names
=
[
"firstw"
,
"secondw"
,
"thirdw"
,
"fourthw"
],
target_vars
=
[
predict_word
],
executor
=
exe
)
dictionary
=
[]
for
w
in
word_dict
:
if
isinstance
(
w
,
bytes
):
w
=
w
.
decode
(
"ascii"
)
dictionary
.
append
(
w
)
# save word dict to assets folder
hub
.
ModuleDesc
.
save_module_dict
(
module_path
=
saved_model_path
,
word_dict
=
dictionary
)
def
test_save_module
(
use_cuda
=
False
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
program_guard
(
main_program
,
startup_program
):
words
,
word_emb
=
module_fn
()
exe
.
run
(
startup_program
)
# load inference embedding parameters
saved_model_path
=
"./w2v_saved_inference_model"
fluid
.
io
.
load_inference_model
(
executor
=
exe
,
dirname
=
saved_model_path
)
feed_var_list
=
[
main_program
.
global_block
().
var
(
"words"
)]
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
place
)
results
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
([[[
1
,
2
,
3
,
4
,
5
]]]),
fetch_list
=
[
word_emb
],
return_numpy
=
False
)
np_result
=
np
.
array
(
results
[
0
])
print
(
np_result
)
saved_module_path
=
"./test/word2vec_inference_module"
fluid
.
io
.
save_inference_model
(
dirname
=
saved_module_path
,
feeded_var_names
=
[
"words"
],
target_vars
=
[
word_emb
],
executor
=
exe
)
dictionary
=
[]
for
w
in
word_dict
:
if
isinstance
(
w
,
bytes
):
w
=
w
.
decode
(
"ascii"
)
dictionary
.
append
(
w
)
# save word dict to assets folder
hub
.
ModuleDesc
.
save_module_dict
(
module_path
=
saved_module_path
,
word_dict
=
dictionary
)
def
test_load_module
(
use_cuda
=
False
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
saved_module_path
=
"./test/word2vec_inference_module"
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
saved_module_path
,
executor
=
exe
)
# Sequence input in Paddle must be LOD Tensor, so we need to convert them inside Module
word_ids
=
[[
1
,
2
,
3
,
4
,
5
]]
lod
=
[[
5
]]
word_ids_lod_tensor
=
fluid
.
create_lod_tensor
(
word_ids
,
lod
,
place
)
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
word_ids_lod_tensor
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
feed_target_names
)
print
(
fetch_targets
)
np_result
=
np
.
array
(
results
[
0
])
print
(
np_result
)
if
__name__
==
"__main__"
:
use_cuda
=
True
train
(
use_cuda
)
test_save_module
()
test_load_module
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录