Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
161f5814
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
283
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
161f5814
编写于
11月 09, 2022
作者:
C
chenjian
提交者:
GitHub
11月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove fluid api in paddlehub compat code (#2118)
* remove fluid api in paddlehub compat code * fix * fix * fix * fix
上级
3d33cadc
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
123 addition
and
122 deletion
+123
-122
paddlehub/compat/module/module_v1.py
paddlehub/compat/module/module_v1.py
+11
-7
paddlehub/compat/task/task_utils.py
paddlehub/compat/task/task_utils.py
+2
-3
paddlehub/compat/task/text_generation_task.py
paddlehub/compat/task/text_generation_task.py
+110
-112
未找到文件。
paddlehub/compat/module/module_v1.py
浏览文件 @
161f5814
...
...
@@ -17,7 +17,7 @@ import os
from
typing
import
List
from
typing
import
Tuple
import
paddle
import
paddle
.io
import
paddle2onnx
from
easydict
import
EasyDict
...
...
@@ -179,15 +179,18 @@ class ModuleV1(object):
for
item
in
zip
(
*
process_data
):
yield
item
nonlocal
feed_dict
process_data
=
[]
feed_name_list
=
[]
feed_list
=
[]
for
key
in
data_format
:
process_data
.
append
([
value
[
'processed'
]
for
value
in
data
[
key
]])
feed_name_list
.
append
(
data_format
[
key
][
'feed_key'
])
feeder
=
paddle
.
fluid
.
DataFeeder
(
feed_list
=
feed_name_list
,
place
=
place
)
return
functools
.
partial
(
_reader
,
process_data
=
process_data
),
feeder
feed_list
.
append
(
feed_dict
[
key
])
loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
feed_list
=
feed_list
,
capacity
=
1
)
return
functools
.
partial
(
_reader
,
process_data
=
process_data
),
loader
_
,
fetch_dict
,
program
=
self
.
context
(
signature
=
sign_name
,
for_test
=
True
)
feed_dict
,
fetch_dict
,
program
=
self
.
context
(
signature
=
sign_name
,
for_test
=
True
)
fetch_list
=
list
([
value
for
key
,
value
in
fetch_dict
.
items
()])
with
paddle
.
static
.
program_guard
(
program
):
result
=
[]
...
...
@@ -197,10 +200,11 @@ class ModuleV1(object):
exe
=
paddle
.
static
.
Executor
(
place
=
place
)
data
=
self
.
processor
.
preprocess
(
sign_name
=
sign_name
,
data_dict
=
data
)
data_format
=
self
.
processor
.
data_format
(
sign_name
=
sign_name
)
reader
,
fee
der
=
_get_reader_and_feeder
(
data_format
,
data
,
place
)
reader
,
loa
der
=
_get_reader_and_feeder
(
data_format
,
data
,
place
)
reader
=
paddle
.
batch
(
reader
,
batch_size
=
batch_size
)
for
batch
in
reader
():
data_out
=
exe
.
run
(
feed
=
feeder
.
feed
(
batch
),
fetch_list
=
fetch_list
,
return_numpy
=
False
)
loader
.
set_sample_list_generator
(
reader
,
places
=
place
)
for
batch
in
loader
():
data_out
=
exe
.
run
(
feed
=
batch
,
fetch_list
=
fetch_list
,
return_numpy
=
False
)
sub_data
=
{
key
:
value
[
index
:
index
+
len
(
batch
)]
for
key
,
value
in
data
.
items
()}
result
+=
self
.
processor
.
postprocess
(
sign_name
,
data_out
,
sub_data
,
**
kwargs
)
index
+=
len
(
batch
)
...
...
paddlehub/compat/task/task_utils.py
浏览文件 @
161f5814
...
...
@@ -12,12 +12,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
time
from
typing
import
Any
import
paddle
import
paddle
.utils.unique_name
class
RunState
(
object
):
...
...
@@ -63,7 +62,7 @@ class RunEnv(object):
self
.
labels
=
None
self
.
metrics
=
None
self
.
is_inititalized
=
False
self
.
UNG
=
copy
.
deepcopy
(
paddle
.
fluid
.
unique_name
.
generator
)
self
.
UNG
=
paddle
.
utils
.
unique_name
.
generate
def
__setattr__
(
self
,
key
:
str
,
value
:
Any
):
self
.
__dict__
[
key
]
=
value
...
...
paddlehub/compat/task/text_generation_task.py
浏览文件 @
161f5814
...
...
@@ -12,69 +12,72 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
time
from
collections
import
OrderedDict
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
ParamAttr
from
paddle.fluid.layers
import
RNNCell
,
LSTMCell
,
rnn
,
BeamSearchDecoder
,
dynamic_decode
import
paddle
import
paddle.nn
as
nn
from
paddle
import
ParamAttr
from
paddle.nn
import
BeamSearchDecoder
from
paddle.nn
import
dynamic_decode
from
paddle.nn
import
LSTMCell
from
paddle.nn
import
RNN
from
paddle.nn
import
RNNCellBase
from
paddlehub.compat.task.metrics
import
compute_bleu
from
paddlehub.compat.task.base_task
import
BaseTask
from
paddlehub.compat.task.metrics
import
compute_bleu
class
AttentionDecoderCell
(
RNNCellBase
):
class
AttentionDecoderCell
(
RNNCell
):
def
__init__
(
self
,
num_layers
,
hidden_size
,
dropout_prob
=
0.
,
init_scale
=
0.1
):
def
__init__
(
self
,
num_layers
,
input_size
,
hidden_size
,
dropout_prob
=
0.
,
init_scale
=
0.1
):
super
(
AttentionDecoderCell
,
self
).
__init__
()
self
.
num_layers
=
num_layers
self
.
hidden_size
=
hidden_size
self
.
dropout_prob
=
dropout_prob
self
.
lstm_cells
=
[]
self
.
init_scale
=
init_scale
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
init_scale
,
high
=
init_scale
))
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
for
i
in
range
(
num_layers
):
self
.
lstm_cells
.
append
(
LSTMCell
(
hidden_size
,
param_attr
,
bias_attr
))
self
.
lstm_cells
.
append
(
LSTMCell
(
input_size
=
input_size
+
hidden_size
if
i
==
0
else
hidden_size
,
hidden_size
=
hidden_size
))
def
attention
(
self
,
query
,
enc_output
,
mask
=
None
):
query
=
fluid
.
layers
.
unsqueeze
(
query
,
[
1
])
memory
=
fluid
.
layers
.
fc
(
enc_output
,
self
.
hidden_size
,
num_flatten_dims
=
2
,
param_attr
=
ParamAttr
(
name
=
'dec_memory_w'
,
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
)))
attn
=
fluid
.
layers
.
matmul
(
query
,
memory
,
transpose_y
=
True
)
query
=
paddle
.
unsqueeze
(
query
,
[
1
])
memory
=
paddle
.
static
.
nn
.
fc
(
enc_output
,
self
.
hidden_size
,
num_flatten_dims
=
2
,
weight_attr
=
ParamAttr
(
name
=
'dec_memory_w'
,
initializer
=
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
)))
attn
=
paddle
.
matmul
(
query
,
memory
,
transpose_y
=
True
)
if
mask
:
attn
=
fluid
.
layers
.
transpose
(
attn
,
[
1
,
0
,
2
])
attn
=
fluid
.
layers
.
elementwise_add
(
attn
,
mask
*
1000000000
,
-
1
)
attn
=
fluid
.
layers
.
transpose
(
attn
,
[
1
,
0
,
2
])
weight
=
fluid
.
layers
.
softmax
(
attn
)
weight_memory
=
fluid
.
layers
.
matmul
(
weight
,
memory
)
attn
=
paddle
.
transpose
(
attn
,
[
1
,
0
,
2
])
attn
=
attn
+
(
mask
*
1000000000
)
attn
=
paddle
.
transpose
(
attn
,
[
1
,
0
,
2
])
weight
=
nn
.
functional
.
softmax
(
attn
)
weight_memory
=
paddle
.
matmul
(
weight
,
memory
)
return
weight_memory
def
call
(
self
,
step_input
,
states
,
enc_output
,
enc_padding_mask
=
None
):
def
forward
(
self
,
step_input
,
states
,
enc_output
,
enc_padding_mask
=
None
):
lstm_states
,
input_feed
=
states
new_lstm_states
=
[]
step_input
=
fluid
.
layers
.
concat
([
step_input
,
input_feed
],
1
)
step_input
=
paddle
.
concat
([
step_input
,
input_feed
],
1
)
for
i
in
range
(
self
.
num_layers
):
out
,
new_lstm_state
=
self
.
lstm_cells
[
i
](
step_input
,
lstm_states
[
i
])
step_input
=
fluid
.
layers
.
dropout
(
out
,
self
.
dropout_prob
,
dropout_implementation
=
'upscale_in_train'
)
if
self
.
dropout_prob
>
0
else
out
step_input
=
nn
.
functional
.
dropout
(
out
,
self
.
dropout_prob
,
mode
=
'upscale_in_train'
)
if
self
.
dropout_prob
>
0
else
out
new_lstm_states
.
append
(
new_lstm_state
)
dec_att
=
self
.
attention
(
step_input
,
enc_output
,
enc_padding_mask
)
dec_att
=
fluid
.
layers
.
squeeze
(
dec_att
,
[
1
])
concat_att_out
=
fluid
.
layers
.
concat
([
dec_att
,
step_input
],
1
)
out
=
fluid
.
layers
.
fc
(
concat_att_out
,
self
.
hidden_size
,
param_attr
=
ParamAttr
(
name
=
'dec_out_w'
,
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
)))
dec_att
=
paddle
.
squeeze
(
dec_att
,
[
1
])
concat_att_out
=
paddle
.
concat
([
dec_att
,
step_input
],
1
)
out
=
paddle
.
static
.
nn
.
fc
(
concat_att_out
,
self
.
hidden_size
,
weight_attr
=
ParamAttr
(
name
=
'dec_out_w'
,
initializer
=
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
)))
return
out
,
[
new_lstm_states
,
out
]
...
...
@@ -101,32 +104,31 @@ class TextGenerationTask(BaseTask):
'''
def
__init__
(
self
,
feature
,
token_feature
,
max_seq_len
,
num_classes
,
dataset
=
None
,
num_layers
=
1
,
hidden_size
=
512
,
dropout
=
0.
,
beam_size
=
10
,
beam_max_step_num
=
30
,
start_token
=
'<s>'
,
end_token
=
'</s>'
,
startup_program
=
None
,
config
=
None
,
metrics_choices
=
'default'
,
self
,
feature
,
token_feature
,
max_seq_len
,
num_classes
,
dataset
=
None
,
num_layers
=
1
,
hidden_size
=
512
,
dropout
=
0.
,
beam_size
=
10
,
beam_max_step_num
=
30
,
start_token
=
'<s>'
,
end_token
=
'</s>'
,
startup_program
=
None
,
config
=
None
,
metrics_choices
=
'default'
,
):
if
metrics_choices
==
'default'
:
metrics_choices
=
[
'bleu'
]
main_program
=
feature
.
block
.
program
super
(
TextGenerationTask
,
self
).
__init__
(
dataset
=
dataset
,
main_program
=
main_program
,
startup_program
=
startup_program
,
config
=
config
,
metrics_choices
=
metrics_choices
)
super
(
TextGenerationTask
,
self
).
__init__
(
dataset
=
dataset
,
main_program
=
main_program
,
startup_program
=
startup_program
,
config
=
config
,
metrics_choices
=
metrics_choices
)
self
.
num_layers
=
num_layers
self
.
hidden_size
=
hidden_size
...
...
@@ -141,77 +143,73 @@ class TextGenerationTask(BaseTask):
self
.
end_token
=
end_token
def
_add_label
(
self
):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
self
.
max_seq_len
,
1
],
dtype
=
'int64'
)
label
=
paddle
.
static
.
data
(
name
=
'label'
,
shape
=
[
self
.
max_seq_len
,
1
],
dtype
=
'int64'
)
return
[
label
]
def
_build_net
(
self
):
self
.
seq_len
=
fluid
.
layers
.
data
(
name
=
'seq_len'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
0
)
self
.
seq_len_used
=
fluid
.
layers
.
squeeze
(
self
.
seq_len
,
axes
=
[
1
]
)
src_mask
=
fluid
.
layers
.
sequence_mask
(
self
.
seq_len_used
,
maxlen
=
self
.
max_seq_len
,
dtype
=
'float32'
)
self
.
seq_len
=
paddle
.
static
.
data
(
name
=
'seq_len'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
0
)
self
.
seq_len_used
=
paddle
.
squeeze
(
self
.
seq_len
)
src_mask
=
nn
.
functional
.
sequence_mask
(
self
.
seq_len_used
,
maxlen
=
self
.
max_seq_len
,
dtype
=
'float32'
)
enc_padding_mask
=
(
src_mask
-
1.0
)
# Define decoder and initialize it.
dec_cell
=
AttentionDecoderCell
(
self
.
num_layers
,
self
.
hidden_size
,
self
.
dropout
)
dec_init_hidden
=
fluid
.
layers
.
fc
(
input
=
self
.
feature
,
size
=
self
.
hidden_size
,
num_flatten_dims
=
1
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'dec_init_hidden_w'
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
scale
=
0.02
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'dec_init_hidden_b'
,
initializer
=
fluid
.
initializer
.
Constant
(
0.
)))
dec_cell
=
AttentionDecoderCell
(
self
.
num_layers
,
self
.
feature
.
shape
[
-
1
],
self
.
hidden_size
,
self
.
dropout
)
dec_init_hidden
=
paddle
.
static
.
nn
.
fc
(
self
.
feature
,
size
=
self
.
hidden_size
,
num_flatten_dims
=
1
,
weight_attr
=
ParamAttr
(
name
=
'dec_init_hidden_w'
,
initializer
=
nn
.
initializer
.
TruncatedNormal
(
std
=
0.02
)),
bias_attr
=
ParamAttr
(
name
=
'dec_init_hidden_b'
,
initializer
=
nn
.
initializer
.
Constant
(
0.
)))
dec_initial_states
=
[
[[
dec_init_hidden
,
dec_cell
.
get_initial_states
(
batch_ref
=
self
.
feature
,
shape
=
[
self
.
hidden_size
])]]
*
self
.
num_layers
,
dec_cell
.
get_initial_states
(
batch_ref
=
self
.
feature
,
shape
=
[
self
.
hidden_size
])
]
tar_vocab_size
=
len
(
self
.
_label_list
)
tar_embeder
=
lambda
x
:
fluid
.
embedding
(
tar_embeder
=
lambda
x
:
paddle
.
static
.
nn
.
embedding
(
input
=
x
,
size
=
[
tar_vocab_size
,
self
.
hidden_size
],
dtype
=
'float32'
,
is_sparse
=
False
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'target_embedding'
,
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
0.1
,
high
=
0.1
)))
param_attr
=
ParamAttr
(
name
=
'target_embedding'
,
initializer
=
nn
.
initializer
.
Uniform
(
low
=-
0.1
,
high
=
0.1
)))
start_token_id
=
self
.
_label_list
.
index
(
self
.
start_token
)
end_token_id
=
self
.
_label_list
.
index
(
self
.
end_token
)
if
not
self
.
is_predict_phase
:
self
.
dec_input
=
fluid
.
layers
.
data
(
name
=
'dec_input'
,
shape
=
[
self
.
max_seq_len
],
dtype
=
'int64'
)
self
.
dec_input
=
paddle
.
static
.
data
(
name
=
'dec_input'
,
shape
=
[
self
.
max_seq_len
],
dtype
=
'int64'
)
tar_emb
=
tar_embeder
(
self
.
dec_input
)
dec_output
,
_
=
rnn
(
cell
=
dec_cell
,
inputs
=
tar_emb
,
initial_states
=
dec_initial_states
,
sequence_length
=
None
,
enc_output
=
self
.
token_feature
,
enc_padding_mask
=
enc_padding_mask
)
self
.
logits
=
fluid
.
layers
.
fc
(
dec_output
,
size
=
tar_vocab_size
,
num_flatten_dims
=
len
(
dec_output
.
shape
)
-
1
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'output_w'
,
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
0.1
,
high
=
0.1
)))
self
.
ret_infers
=
fluid
.
layers
.
reshape
(
x
=
fluid
.
layers
.
argmax
(
self
.
logits
,
axis
=
2
),
shape
=
[
-
1
,
1
])
rnn
=
nn
.
RNN
(
dec_cell
,
is_reverse
=
False
,
time_major
=
False
)
dec_output
,
_
=
rnn
(
inputs
=
tar_emb
,
initial_states
=
dec_initial_states
,
enc_output
=
self
.
token_feature
,
enc_padding_mask
=
enc_padding_mask
)
self
.
logits
=
paddle
.
static
.
nn
.
fc
(
dec_output
,
size
=
tar_vocab_size
,
num_flatten_dims
=
len
(
dec_output
.
shape
)
-
1
,
weight_attr
=
ParamAttr
(
name
=
'output_w'
,
initializer
=
nn
.
initializer
.
Uniform
(
low
=-
0.1
,
high
=
0.1
)))
self
.
ret_infers
=
paddle
.
reshape
(
x
=
paddle
.
argmax
(
self
.
logits
,
axis
=
2
),
shape
=
[
-
1
,
1
])
logits
=
self
.
logits
logits
=
fluid
.
layers
.
softmax
(
logits
)
logits
=
nn
.
functional
.
softmax
(
logits
)
return
[
logits
]
else
:
output_layer
=
lambda
x
:
fluid
.
layers
.
fc
(
x
,
size
=
tar_vocab_size
,
num_flatten_dims
=
len
(
x
.
shape
)
-
1
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'output_w'
))
beam_search_decoder
=
BeamSearchDecoder
(
dec_cell
,
start_token_id
,
end_token_id
,
self
.
beam_size
,
embedding_fn
=
tar_embeder
,
output_fn
=
output_layer
)
output_layer
=
lambda
x
:
paddle
.
static
.
nn
.
fc
(
x
,
size
=
tar_vocab_size
,
num_flatten_dims
=
len
(
x
.
shape
)
-
1
,
weight_attr
=
ParamAttr
(
name
=
'output_w'
))
beam_search_decoder
=
BeamSearchDecoder
(
dec_cell
,
start_token_id
,
end_token_id
,
self
.
beam_size
,
embedding_fn
=
tar_embeder
,
output_fn
=
output_layer
)
enc_output
=
beam_search_decoder
.
tile_beam_merge_with_batch
(
self
.
token_feature
,
self
.
beam_size
)
enc_padding_mask
=
beam_search_decoder
.
tile_beam_merge_with_batch
(
enc_padding_mask
,
self
.
beam_size
)
self
.
ret_infers
,
_
=
dynamic_decode
(
beam_search_decoder
,
inits
=
dec_initial_states
,
max_step_num
=
self
.
beam_max_step_num
,
enc_output
=
enc_output
,
enc_padding_mask
=
enc_padding_mask
)
self
.
ret_infers
,
_
=
dynamic_decode
(
beam_search_decoder
,
inits
=
dec_initial_states
,
max_step_num
=
self
.
beam_max_step_num
,
enc_output
=
enc_output
,
enc_padding_mask
=
enc_padding_mask
)
return
self
.
ret_infers
def
_postprocessing
(
self
,
run_states
):
...
...
@@ -229,18 +227,18 @@ class TextGenerationTask(BaseTask):
return
results
def
_add_metrics
(
self
):
self
.
ret_labels
=
fluid
.
layers
.
reshape
(
x
=
self
.
labels
[
0
],
shape
=
[
-
1
,
1
])
self
.
ret_labels
=
paddle
.
reshape
(
x
=
self
.
labels
[
0
],
shape
=
[
-
1
,
1
])
return
[
self
.
ret_labels
,
self
.
ret_infers
,
self
.
seq_len_used
]
def
_add_loss
(
self
):
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
outputs
[
0
],
label
=
self
.
labels
[
0
],
soft_label
=
False
)
loss
=
fluid
.
layers
.
unsqueeze
(
loss
,
axe
s
=
[
2
])
max_tar_seq_len
=
fluid
.
layers
.
shape
(
self
.
dec_input
)[
1
]
tar_sequence_length
=
fluid
.
layers
.
elementwise_sub
(
self
.
seq_len_used
,
fluid
.
layers
.
ones_like
(
self
.
seq_len_used
)
)
tar_mask
=
fluid
.
layers
.
sequence_mask
(
tar_sequence_length
,
maxlen
=
max_tar_seq_len
,
dtype
=
'float32'
)
loss
=
nn
.
functional
.
cross_entropy
(
input
=
self
.
outputs
[
0
],
label
=
self
.
labels
[
0
],
soft_label
=
False
)
loss
=
paddle
.
unsqueeze
(
loss
,
axi
s
=
[
2
])
max_tar_seq_len
=
paddle
.
shape
(
self
.
dec_input
)[
1
]
tar_sequence_length
=
self
.
seq_len_used
-
paddle
.
ones_like
(
self
.
seq_len_used
)
tar_mask
=
nn
.
functional
.
sequence_mask
(
tar_sequence_length
,
maxlen
=
max_tar_seq_len
,
dtype
=
'float32'
)
loss
=
loss
*
tar_mask
loss
=
fluid
.
layers
.
reduce_mean
(
loss
,
dim
=
[
0
])
loss
=
fluid
.
layers
.
reduce_
sum
(
loss
)
loss
=
paddle
.
mean
(
loss
,
axis
=
[
0
])
loss
=
paddle
.
sum
(
loss
)
return
loss
@
property
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录