目前深度学习模型参数可分类两类:参数与超参数,前者是模型通过大量的样本数据进行训练学习得到的参数数据;后者则需要通过人工经验或者不断尝试找到最佳设置(如学习率、dropout_rate、batch_size等),以提高模型训练的效果。如果想得到一个效果好的深度学习神经网络模型,超参的设置非常关键。因为模型参数空间大,目前超参调整都是通过手动,依赖人工经验或者不断尝试,且不同模型、样本数据和场景下不尽相同,所以需要大量尝试,时间成本和资源成本非常浪费。PaddleHub Auto Fine-tune可以实现自动调整超参数。
目前深度学习模型参数可分类两类:**模型参数(Model Parameters) ** 与 **超参数(Hyper Parameters) **,前者是模型通过大量的样本数据进行训练学习得到的参数数据;后者则需要通过人工经验或者不断尝试找到最佳设置(如学习率、dropout_rate、batch_size等),以提高模型训练的效果。如果想得到一个效果好的深度学习神经网络模型,超参的设置非常关键。因为模型参数空间大,目前超参调整都是通过手动,依赖人工经验或者不断尝试,且不同模型、样本数据和场景下不尽相同,所以需要大量尝试,时间成本和资源成本非常浪费。PaddleHub Auto Fine-tune可以实现自动调整超参数。