Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
0f2591f0
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0f2591f0
编写于
2月 25, 2020
作者:
C
channingss
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add python support for mask detection
上级
3e780056
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
274 addition
and
0 deletion
+274
-0
demo/mask_detection/python/infer.py
demo/mask_detection/python/infer.py
+274
-0
未找到文件。
demo/mask_detection/python/infer.py
0 → 100644
浏览文件 @
0f2591f0
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
ast
import
time
import
json
import
argparse
import
numpy
as
np
import
cv2
import
paddle.fluid
as
fluid
from
PIL
import
Image
from
PIL
import
ImageDraw
import
argparse
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
'mask detection.'
)
parser
.
add_argument
(
'--models_dir'
,
type
=
str
,
default
=
''
,
help
=
'path of models.'
)
parser
.
add_argument
(
'--img_paths'
,
type
=
str
,
default
=
''
,
help
=
'path of images'
)
parser
.
add_argument
(
'--video_path'
,
type
=
str
,
default
=
''
,
help
=
'path of video.'
)
parser
.
add_argument
(
'--video_size'
,
type
=
tuple
,
default
=
(
1920
,
1080
),
help
=
'size of video.'
)
parser
.
add_argument
(
'--use_camera'
,
type
=
bool
,
default
=
False
,
help
=
'switch detect video or camera, default:video.'
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
bool
,
default
=
False
,
help
=
'switch cpu/gpu, default:cpu.'
)
args
=
parser
.
parse_args
()
return
args
class
FaceResult
:
def
__init__
(
self
,
rect_data
,
rect_info
):
self
.
rect_info
=
rect_info
self
.
rect_data
=
rect_data
self
.
class_id
=
-
1
self
.
score
=
0.0
def
VisualizeResult
(
im
,
faces
):
LABELS
=
[
'NO_MASK'
,
'MASK'
]
COLORS
=
[(
0
,
0
,
255
),
(
0
,
255
,
0
)]
for
face
in
faces
:
label
=
LABELS
[
face
.
class_id
]
color
=
COLORS
[
face
.
class_id
]
left
,
right
,
top
,
bottom
=
[
int
(
item
)
for
item
in
face
.
rect_info
]
label_position
=
(
left
,
top
)
cv2
.
putText
(
im
,
label
,
label_position
,
cv2
.
FONT_HERSHEY_SIMPLEX
,
1
,
color
,
2
,
cv2
.
LINE_AA
)
cv2
.
rectangle
(
im
,
(
left
,
top
),
(
right
,
bottom
),
color
,
3
)
return
im
def
LoadModel
(
model_dir
,
use_gpu
=
False
):
config
=
fluid
.
core
.
AnalysisConfig
(
model_dir
+
'/__model__'
,
model_dir
+
'/__params__'
)
if
use_gpu
:
config
.
enable_use_gpu
(
100
,
0
)
config
.
switch_ir_optim
(
True
)
else
:
config
.
disable_gpu
()
config
.
disable_glog_info
()
config
.
switch_specify_input_names
(
True
)
config
.
enable_memory_optim
()
return
fluid
.
core
.
create_paddle_predictor
(
config
)
class
MaskClassifier
:
def
__init__
(
self
,
model_dir
,
mean
,
scale
,
use_gpu
=
False
):
self
.
mean
=
np
.
array
(
mean
).
reshape
((
3
,
1
,
1
))
self
.
scale
=
np
.
array
(
scale
).
reshape
((
3
,
1
,
1
))
self
.
predictor
=
LoadModel
(
model_dir
,
use_gpu
)
self
.
EVAL_SIZE
=
(
128
,
128
)
def
Preprocess
(
self
,
faces
):
h
,
w
=
self
.
EVAL_SIZE
[
1
],
self
.
EVAL_SIZE
[
0
]
inputs
=
[]
for
face
in
faces
:
im
=
cv2
.
resize
(
face
.
rect_data
,
(
128
,
128
),
fx
=
0
,
fy
=
0
,
interpolation
=
cv2
.
INTER_CUBIC
)
# HWC -> CHW
im
=
im
.
swapaxes
(
1
,
2
)
im
=
im
.
swapaxes
(
0
,
1
)
# Convert to float
im
=
im
[:,
:,
:].
astype
(
'float32'
)
/
256.0
# im = (im - mean) * scale
im
=
im
-
self
.
mean
im
=
im
*
self
.
scale
im
=
im
[
np
.
newaxis
,
:,
:,
:]
inputs
.
append
(
im
)
return
inputs
def
Postprocess
(
self
,
output_data
,
faces
):
argmx
=
np
.
argmax
(
output_data
,
axis
=
1
)
for
idx
in
range
(
len
(
faces
)):
faces
[
idx
].
class_id
=
argmx
[
idx
]
faces
[
idx
].
score
=
output_data
[
idx
][
argmx
[
idx
]]
return
faces
def
Predict
(
self
,
faces
):
inputs
=
self
.
Preprocess
(
faces
)
if
len
(
inputs
)
!=
0
:
input_data
=
np
.
concatenate
(
inputs
)
im_tensor
=
fluid
.
core
.
PaddleTensor
(
input_data
.
copy
().
astype
(
'float32'
))
output_data
=
self
.
predictor
.
run
([
im_tensor
])[
1
]
output_data
=
output_data
.
as_ndarray
()
self
.
Postprocess
(
output_data
,
faces
)
class
FaceDetector
:
def
__init__
(
self
,
model_dir
,
mean
,
scale
,
use_gpu
=
False
,
threshold
=
0.7
):
self
.
mean
=
np
.
array
(
mean
).
reshape
((
3
,
1
,
1
))
self
.
scale
=
np
.
array
(
scale
).
reshape
((
3
,
1
,
1
))
self
.
threshold
=
threshold
self
.
predictor
=
LoadModel
(
model_dir
,
use_gpu
)
def
Preprocess
(
self
,
image
,
shrink
):
h
,
w
=
int
(
image
.
shape
[
1
]
*
shrink
),
int
(
image
.
shape
[
0
]
*
shrink
)
im
=
cv2
.
resize
(
image
,
(
h
,
w
),
fx
=
0
,
fy
=
0
,
interpolation
=
cv2
.
INTER_CUBIC
)
# HWC -> CHW
im
=
im
.
swapaxes
(
1
,
2
)
im
=
im
.
swapaxes
(
0
,
1
)
# Convert to float
im
=
im
[:,
:,
:].
astype
(
'float32'
)
# im = (im - mean) * scale
im
=
im
-
self
.
mean
im
=
im
*
self
.
scale
im
=
im
[
np
.
newaxis
,
:,
:,
:]
return
im
def
Postprocess
(
self
,
output_data
,
ori_im
,
shrink
):
det_out
=
[]
h
,
w
=
ori_im
.
shape
[
0
],
ori_im
.
shape
[
1
]
for
out
in
output_data
:
class_id
=
int
(
out
[
0
])
score
=
out
[
1
]
xmin
=
(
out
[
2
]
*
w
)
ymin
=
(
out
[
3
]
*
h
)
xmax
=
(
out
[
4
]
*
w
)
ymax
=
(
out
[
5
]
*
h
)
wd
=
xmax
-
xmin
hd
=
ymax
-
ymin
valid
=
(
xmax
>=
xmin
and
xmin
>
0
and
ymax
>=
ymin
and
ymin
>
0
)
if
score
>
self
.
threshold
and
valid
:
roi_rect
=
ori_im
[
int
(
ymin
):
int
(
ymax
),
int
(
xmin
):
int
(
xmax
)]
det_out
.
append
(
FaceResult
(
roi_rect
,
[
xmin
,
xmax
,
ymin
,
ymax
]))
return
det_out
def
Predict
(
self
,
image
,
shrink
):
ori_im
=
image
.
copy
()
im
=
self
.
Preprocess
(
image
,
shrink
)
im_tensor
=
fluid
.
core
.
PaddleTensor
(
im
.
copy
().
astype
(
'float32'
))
output_data
=
self
.
predictor
.
run
([
im_tensor
])[
0
]
output_data
=
output_data
.
as_ndarray
()
return
self
.
Postprocess
(
output_data
,
ori_im
,
shrink
)
def
predict_images
(
args
):
detector
=
FaceDetector
(
model_dir
=
args
.
models_dir
+
'/pyramidbox_lite/'
,
mean
=
[
104.0
,
177.0
,
123.0
],
scale
=
[
0.007843
,
0.007843
,
0.007843
],
use_gpu
=
args
.
use_gpu
,
threshold
=
0.7
)
classifier
=
MaskClassifier
(
model_dir
=
args
.
models_dir
+
'/mask_detector/'
,
mean
=
[
0.5
,
0.5
,
0.5
],
scale
=
[
1.0
,
1.0
,
1.0
],
use_gpu
=
args
.
use_gpu
)
names
=
[]
image_paths
=
[]
for
name
in
os
.
listdir
(
args
.
img_paths
):
if
name
.
split
(
'.'
)[
-
1
]
in
[
'jpg'
,
'png'
,
'jpeg'
]:
names
.
append
(
name
)
image_paths
.
append
(
os
.
path
.
join
(
args
.
img_paths
,
name
))
images
=
[
cv2
.
imread
(
path
,
cv2
.
IMREAD_COLOR
)
for
path
in
image_paths
]
path
=
'./result'
isExists
=
os
.
path
.
exists
(
path
)
if
not
isExists
:
os
.
makedirs
(
path
)
for
idx
in
range
(
len
(
images
)):
im
=
images
[
idx
]
det_out
=
detector
.
Predict
(
im
,
shrink
=
0.7
)
classifier
.
Predict
(
det_out
)
img
=
VisualizeResult
(
im
,
det_out
)
cv2
.
imwrite
(
os
.
path
.
join
(
path
,
names
[
idx
]
+
'.result.jpg'
),
img
)
def
predict_video
(
args
,
im_shape
=
(
1920
,
1080
),
use_camera
=
False
):
if
args
.
use_camera
:
capture
=
cv2
.
VideoCapture
(
0
)
else
:
capture
=
cv2
.
VideoCapture
(
args
.
video_path
)
detector
=
FaceDetector
(
model_dir
=
args
.
models_dir
+
'/pyramidbox_lite/'
,
mean
=
[
104.0
,
177.0
,
123.0
],
scale
=
[
0.007843
,
0.007843
,
0.007843
],
use_gpu
=
args
.
use_gpu
,
threshold
=
0.7
)
classifier
=
MaskClassifier
(
model_dir
=
args
.
models_dir
+
'/mask_detector/'
,
mean
=
[
0.5
,
0.5
,
0.5
],
scale
=
[
1.0
,
1.0
,
1.0
],
use_gpu
=
args
.
use_gpu
)
path
=
'./result'
isExists
=
os
.
path
.
exists
(
path
)
if
not
isExists
:
os
.
makedirs
(
path
)
fps
=
30
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
os
.
path
.
join
(
path
,
'result.mp4'
),
fourcc
,
fps
,
args
.
video_size
)
import
time
start_time
=
time
.
time
()
index
=
0
while
(
1
):
ret
,
frame
=
capture
.
read
()
if
not
ret
:
break
print
(
'detect frame:%d'
%
(
index
))
index
+=
1
det_out
=
detector
.
Predict
(
frame
,
shrink
=
0.5
)
classifier
.
Predict
(
det_out
)
end_pre
=
time
.
time
()
im
=
VisualizeResult
(
frame
,
det_out
)
writer
.
write
(
im
)
end_time
=
time
.
time
()
print
(
"include read time:"
,
(
end_time
-
start_time
)
/
index
)
writer
.
release
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
print
(
args
.
models_dir
)
if
args
.
img_paths
!=
''
:
predict_images
(
args
)
elif
args
.
video_path
!=
''
:
predict_video
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录