提交 0f2591f0 编写于 作者: C channingss

add python support for mask detection

上级 3e780056
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import ast
import time
import json
import argparse
import numpy as np
import cv2
import paddle.fluid as fluid
from PIL import Image
from PIL import ImageDraw
import argparse
def parse_args():
parser = argparse.ArgumentParser('mask detection.')
parser.add_argument(
'--models_dir', type=str, default='', help='path of models.')
parser.add_argument(
'--img_paths', type=str, default='', help='path of images')
parser.add_argument(
'--video_path', type=str, default='', help='path of video.')
parser.add_argument(
'--video_size', type=tuple, default=(1920, 1080), help='size of video.')
parser.add_argument(
'--use_camera',
type=bool,
default=False,
help='switch detect video or camera, default:video.')
parser.add_argument(
'--use_gpu',
type=bool,
default=False,
help='switch cpu/gpu, default:cpu.')
args = parser.parse_args()
return args
class FaceResult:
def __init__(self, rect_data, rect_info):
self.rect_info = rect_info
self.rect_data = rect_data
self.class_id = -1
self.score = 0.0
def VisualizeResult(im, faces):
LABELS = ['NO_MASK', 'MASK']
COLORS = [(0, 0, 255), (0, 255, 0)]
for face in faces:
label = LABELS[face.class_id]
color = COLORS[face.class_id]
left, right, top, bottom = [int(item) for item in face.rect_info]
label_position = (left, top)
cv2.putText(im, label, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1,
color, 2, cv2.LINE_AA)
cv2.rectangle(im, (left, top), (right, bottom), color, 3)
return im
def LoadModel(model_dir, use_gpu=False):
config = fluid.core.AnalysisConfig(model_dir + '/__model__',
model_dir + '/__params__')
if use_gpu:
config.enable_use_gpu(100, 0)
config.switch_ir_optim(True)
else:
config.disable_gpu()
config.disable_glog_info()
config.switch_specify_input_names(True)
config.enable_memory_optim()
return fluid.core.create_paddle_predictor(config)
class MaskClassifier:
def __init__(self, model_dir, mean, scale, use_gpu=False):
self.mean = np.array(mean).reshape((3, 1, 1))
self.scale = np.array(scale).reshape((3, 1, 1))
self.predictor = LoadModel(model_dir, use_gpu)
self.EVAL_SIZE = (128, 128)
def Preprocess(self, faces):
h, w = self.EVAL_SIZE[1], self.EVAL_SIZE[0]
inputs = []
for face in faces:
im = cv2.resize(
face.rect_data, (128, 128),
fx=0,
fy=0,
interpolation=cv2.INTER_CUBIC)
# HWC -> CHW
im = im.swapaxes(1, 2)
im = im.swapaxes(0, 1)
# Convert to float
im = im[:, :, :].astype('float32') / 256.0
# im = (im - mean) * scale
im = im - self.mean
im = im * self.scale
im = im[np.newaxis, :, :, :]
inputs.append(im)
return inputs
def Postprocess(self, output_data, faces):
argmx = np.argmax(output_data, axis=1)
for idx in range(len(faces)):
faces[idx].class_id = argmx[idx]
faces[idx].score = output_data[idx][argmx[idx]]
return faces
def Predict(self, faces):
inputs = self.Preprocess(faces)
if len(inputs) != 0:
input_data = np.concatenate(inputs)
im_tensor = fluid.core.PaddleTensor(
input_data.copy().astype('float32'))
output_data = self.predictor.run([im_tensor])[1]
output_data = output_data.as_ndarray()
self.Postprocess(output_data, faces)
class FaceDetector:
def __init__(self, model_dir, mean, scale, use_gpu=False, threshold=0.7):
self.mean = np.array(mean).reshape((3, 1, 1))
self.scale = np.array(scale).reshape((3, 1, 1))
self.threshold = threshold
self.predictor = LoadModel(model_dir, use_gpu)
def Preprocess(self, image, shrink):
h, w = int(image.shape[1] * shrink), int(image.shape[0] * shrink)
im = cv2.resize(
image, (h, w), fx=0, fy=0, interpolation=cv2.INTER_CUBIC)
# HWC -> CHW
im = im.swapaxes(1, 2)
im = im.swapaxes(0, 1)
# Convert to float
im = im[:, :, :].astype('float32')
# im = (im - mean) * scale
im = im - self.mean
im = im * self.scale
im = im[np.newaxis, :, :, :]
return im
def Postprocess(self, output_data, ori_im, shrink):
det_out = []
h, w = ori_im.shape[0], ori_im.shape[1]
for out in output_data:
class_id = int(out[0])
score = out[1]
xmin = (out[2] * w)
ymin = (out[3] * h)
xmax = (out[4] * w)
ymax = (out[5] * h)
wd = xmax - xmin
hd = ymax - ymin
valid = (xmax >= xmin and xmin > 0 and ymax >= ymin and ymin > 0)
if score > self.threshold and valid:
roi_rect = ori_im[int(ymin):int(ymax), int(xmin):int(xmax)]
det_out.append(FaceResult(roi_rect, [xmin, xmax, ymin, ymax]))
return det_out
def Predict(self, image, shrink):
ori_im = image.copy()
im = self.Preprocess(image, shrink)
im_tensor = fluid.core.PaddleTensor(im.copy().astype('float32'))
output_data = self.predictor.run([im_tensor])[0]
output_data = output_data.as_ndarray()
return self.Postprocess(output_data, ori_im, shrink)
def predict_images(args):
detector = FaceDetector(
model_dir=args.models_dir + '/pyramidbox_lite/',
mean=[104.0, 177.0, 123.0],
scale=[0.007843, 0.007843, 0.007843],
use_gpu=args.use_gpu,
threshold=0.7)
classifier = MaskClassifier(
model_dir=args.models_dir + '/mask_detector/',
mean=[0.5, 0.5, 0.5],
scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
names = []
image_paths = []
for name in os.listdir(args.img_paths):
if name.split('.')[-1] in ['jpg', 'png', 'jpeg']:
names.append(name)
image_paths.append(os.path.join(args.img_paths, name))
images = [cv2.imread(path, cv2.IMREAD_COLOR) for path in image_paths]
path = './result'
isExists = os.path.exists(path)
if not isExists:
os.makedirs(path)
for idx in range(len(images)):
im = images[idx]
det_out = detector.Predict(im, shrink=0.7)
classifier.Predict(det_out)
img = VisualizeResult(im, det_out)
cv2.imwrite(os.path.join(path, names[idx] + '.result.jpg'), img)
def predict_video(args, im_shape=(1920, 1080), use_camera=False):
if args.use_camera:
capture = cv2.VideoCapture(0)
else:
capture = cv2.VideoCapture(args.video_path)
detector = FaceDetector(
model_dir=args.models_dir + '/pyramidbox_lite/',
mean=[104.0, 177.0, 123.0],
scale=[0.007843, 0.007843, 0.007843],
use_gpu=args.use_gpu,
threshold=0.7)
classifier = MaskClassifier(
model_dir=args.models_dir + '/mask_detector/',
mean=[0.5, 0.5, 0.5],
scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
path = './result'
isExists = os.path.exists(path)
if not isExists:
os.makedirs(path)
fps = 30
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(
os.path.join(path, 'result.mp4'), fourcc, fps, args.video_size)
import time
start_time = time.time()
index = 0
while (1):
ret, frame = capture.read()
if not ret:
break
print('detect frame:%d' % (index))
index += 1
det_out = detector.Predict(frame, shrink=0.5)
classifier.Predict(det_out)
end_pre = time.time()
im = VisualizeResult(frame, det_out)
writer.write(im)
end_time = time.time()
print("include read time:", (end_time - start_time) / index)
writer.release()
if __name__ == "__main__":
args = parse_args()
print(args.models_dir)
if args.img_paths != '':
predict_images(args)
elif args.video_path != '':
predict_video(args)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册