Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
0cf54052
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0cf54052
编写于
3月 25, 2019
作者:
Z
Zeyu Chen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add chnsenticorp and msra_ner dataset
上级
1a020b80
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
856 addition
and
0 deletion
+856
-0
paddle_hub/dataset/chnsenticorp.py
paddle_hub/dataset/chnsenticorp.py
+72
-0
paddle_hub/dataset/msra_ner.py
paddle_hub/dataset/msra_ner.py
+65
-0
paddle_hub/dataset/task_reader.py
paddle_hub/dataset/task_reader.py
+347
-0
paddle_hub/dataset/tokenization.py
paddle_hub/dataset/tokenization.py
+370
-0
paddle_hub/dir.py
paddle_hub/dir.py
+2
-0
未找到文件。
paddle_hub/dataset/chnsenticorp.py
0 → 100644
浏览文件 @
0cf54052
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_hub.tools.downloader
import
default_downloader
from
paddle_hub.dir
import
DATA_HOME
import
os
import
csv
from
collections
import
namedtuple
DATA_URL
=
"https://paddlehub-dataset.bj.bcebos.com/chnsenticorp_data.tar.gz"
class
ChnSentiCorp
(
object
):
def
__init__
(
self
):
ret
,
tips
,
self
.
dataset_dir
=
default_downloader
.
download_file_and_uncompress
(
url
=
DATA_URL
,
save_path
=
DATA_HOME
,
print_progress
=
True
)
self
.
_load_train_examples
()
self
.
_load_test_examples
()
self
.
_load_dev_examples
()
def
_load_train_examples
(
self
):
self
.
train_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"train.tsv"
)
self
.
train_examples
=
self
.
_read_tsv
(
self
.
train_file
)
def
_load_dev_examples
(
self
):
self
.
dev_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"dev.tsv"
)
self
.
dev_examples
=
self
.
_read_tsv
(
self
.
dev_file
)
def
_load_test_examples
(
self
):
self
.
test_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"test.tsv"
)
self
.
test_examples
=
self
.
_read_tsv
(
self
.
test_file
)
def
get_train_examples
(
self
):
return
self
.
train_examples
def
get_dev_examples
(
self
):
return
self
.
dev_examples
def
get_test_examples
(
self
):
return
self
.
test_examples
def
_read_tsv
(
self
,
input_file
,
quotechar
=
None
):
"""Reads a tab separated value file."""
with
open
(
input_file
,
"r"
)
as
f
:
reader
=
csv
.
reader
(
f
,
delimiter
=
"
\t
"
,
quotechar
=
quotechar
)
Example
=
namedtuple
(
'Example'
,
[
"label"
,
"text_a"
])
examples
=
[]
for
line
in
reader
:
example
=
Example
(
*
line
)
examples
.
append
(
example
)
return
examples
if
__name__
==
"__main__"
:
ds
=
ChnSentiCorp
()
for
e
in
ds
.
get_train_example
():
print
(
e
)
paddle_hub/dataset/msra_ner.py
0 → 100644
浏览文件 @
0cf54052
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_hub.tools.downloader
import
default_downloader
from
paddle_hub.dir
import
DATA_HOME
import
os
import
csv
import
json
from
collections
import
namedtuple
DATA_URL
=
"https://paddlehub-dataset.bj.bcebos.com/msra_ner.tar.gz"
class
MSRA_NER
(
object
):
def
__init__
(
self
):
ret
,
tips
,
self
.
dataset_dir
=
default_downloader
.
download_file_and_uncompress
(
url
=
DATA_URL
,
save_path
=
DATA_HOME
,
print_progress
=
True
)
print
(
self
.
dataset_dir
)
self
.
_load_label_map
()
self
.
_load_train_examples
()
def
_load_label_map
(
self
):
self
.
label_map_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"label_map.json"
)
with
open
(
self
.
label_map_file
)
as
fi
:
self
.
label_map
=
json
.
load
(
fi
)
def
_load_train_examples
(
self
):
train_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"train.tsv"
)
self
.
train_examples
=
self
.
_read_tsv
(
train_file
)
def
get_train_examples
(
self
):
return
self
.
train_examples
def
_read_tsv
(
self
,
input_file
,
quotechar
=
None
):
"""Reads a tab separated value file."""
with
open
(
input_file
,
"r"
)
as
f
:
reader
=
csv
.
reader
(
f
,
delimiter
=
"
\t
"
,
quotechar
=
quotechar
)
headers
=
next
(
reader
)
Example
=
namedtuple
(
'Example'
,
headers
)
examples
=
[]
for
line
in
reader
:
example
=
Example
(
*
line
)
examples
.
append
(
example
)
return
examples
if
__name__
==
"__main__"
:
ds
=
MSRA_NER
()
for
e
in
ds
.
get_train_examples
():
print
(
e
)
paddle_hub/dataset/task_reader.py
0 → 100644
浏览文件 @
0cf54052
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
csv
import
json
import
numpy
as
np
from
collections
import
namedtuple
import
tokenization
from
batching
import
pad_batch_data
class
BaseReader
(
object
):
def
__init__
(
self
,
vocab_path
,
label_map_config
=
None
,
max_seq_len
=
512
,
do_lower_case
=
True
,
in_tokens
=
False
,
random_seed
=
None
):
self
.
max_seq_len
=
max_seq_len
self
.
tokenizer
=
tokenization
.
FullTokenizer
(
vocab_file
=
vocab_path
,
do_lower_case
=
do_lower_case
)
self
.
vocab
=
self
.
tokenizer
.
vocab
self
.
pad_id
=
self
.
vocab
[
"[PAD]"
]
self
.
cls_id
=
self
.
vocab
[
"[CLS]"
]
self
.
sep_id
=
self
.
vocab
[
"[SEP]"
]
self
.
in_tokens
=
in_tokens
np
.
random
.
seed
(
random_seed
)
self
.
current_example
=
0
self
.
current_epoch
=
0
self
.
num_examples
=
0
if
label_map_config
:
with
open
(
label_map_config
)
as
f
:
self
.
label_map
=
json
.
load
(
f
)
else
:
self
.
label_map
=
None
pass
def
get_train_progress
(
self
):
"""Gets progress for training phase."""
return
self
.
current_example
,
self
.
current_epoch
def
_read_tsv
(
self
,
input_file
,
quotechar
=
None
):
"""Reads a tab separated value file."""
with
open
(
input_file
,
"r"
)
as
f
:
reader
=
csv
.
reader
(
f
,
delimiter
=
"
\t
"
,
quotechar
=
quotechar
)
headers
=
next
(
reader
)
Example
=
namedtuple
(
'Example'
,
headers
)
examples
=
[]
for
line
in
reader
:
example
=
Example
(
*
line
)
examples
.
append
(
example
)
return
examples
def
_truncate_seq_pair
(
self
,
tokens_a
,
tokens_b
,
max_length
):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while
True
:
total_length
=
len
(
tokens_a
)
+
len
(
tokens_b
)
if
total_length
<=
max_length
:
break
if
len
(
tokens_a
)
>
len
(
tokens_b
):
tokens_a
.
pop
()
else
:
tokens_b
.
pop
()
def
_convert_example_to_record
(
self
,
example
,
max_seq_length
,
tokenizer
):
"""Converts a single `Example` into a single `Record`."""
text_a
=
tokenization
.
convert_to_unicode
(
example
.
text_a
)
tokens_a
=
tokenizer
.
tokenize
(
text_a
)
tokens_b
=
None
if
"text_b"
in
example
.
_fields
:
text_b
=
tokenization
.
convert_to_unicode
(
example
.
text_b
)
tokens_b
=
tokenizer
.
tokenize
(
text_b
)
if
tokens_b
:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
self
.
_truncate_seq_pair
(
tokens_a
,
tokens_b
,
max_seq_length
-
3
)
else
:
# Account for [CLS] and [SEP] with "- 2"
if
len
(
tokens_a
)
>
max_seq_length
-
2
:
tokens_a
=
tokens_a
[
0
:(
max_seq_length
-
2
)]
# The convention in BERT/ERNIE is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens
=
[]
text_type_ids
=
[]
tokens
.
append
(
"[CLS]"
)
text_type_ids
.
append
(
0
)
for
token
in
tokens_a
:
tokens
.
append
(
token
)
text_type_ids
.
append
(
0
)
tokens
.
append
(
"[SEP]"
)
text_type_ids
.
append
(
0
)
if
tokens_b
:
for
token
in
tokens_b
:
tokens
.
append
(
token
)
text_type_ids
.
append
(
1
)
tokens
.
append
(
"[SEP]"
)
text_type_ids
.
append
(
1
)
token_ids
=
tokenizer
.
convert_tokens_to_ids
(
tokens
)
position_ids
=
list
(
range
(
len
(
token_ids
)))
if
self
.
label_map
:
label_id
=
self
.
label_map
[
example
.
label
]
else
:
label_id
=
example
.
label
Record
=
namedtuple
(
'Record'
,
[
'token_ids'
,
'text_type_ids'
,
'position_ids'
,
'label_id'
,
'qid'
])
qid
=
None
if
"qid"
in
example
.
_fields
:
qid
=
example
.
qid
record
=
Record
(
token_ids
=
token_ids
,
text_type_ids
=
text_type_ids
,
position_ids
=
position_ids
,
label_id
=
label_id
,
qid
=
qid
)
return
record
def
_prepare_batch_data
(
self
,
examples
,
batch_size
,
phase
=
None
):
"""generate batch records"""
batch_records
,
max_len
=
[],
0
for
index
,
example
in
enumerate
(
examples
):
if
phase
==
"train"
:
self
.
current_example
=
index
record
=
self
.
_convert_example_to_record
(
example
,
self
.
max_seq_len
,
self
.
tokenizer
)
max_len
=
max
(
max_len
,
len
(
record
.
token_ids
))
if
self
.
in_tokens
:
to_append
=
(
len
(
batch_records
)
+
1
)
*
max_len
<=
batch_size
else
:
to_append
=
len
(
batch_records
)
<
batch_size
if
to_append
:
batch_records
.
append
(
record
)
else
:
yield
self
.
_pad_batch_records
(
batch_records
)
batch_records
,
max_len
=
[
record
],
len
(
record
.
token_ids
)
if
len
(
batch_records
)
>
0
:
yield
self
.
_pad_batch_records
(
batch_records
)
def
get_num_examples
(
self
,
input_file
):
examples
=
self
.
_read_tsv
(
input_file
)
return
len
(
examples
)
def
data_generator
(
self
,
input_file
,
batch_size
,
epoch
,
shuffle
=
True
,
phase
=
None
):
examples
=
self
.
_read_tsv
(
input_file
)
def
wrapper
():
for
epoch_index
in
range
(
epoch
):
if
phase
==
"train"
:
self
.
current_example
=
0
self
.
current_epoch
=
epoch_index
if
shuffle
:
np
.
random
.
shuffle
(
examples
)
for
batch_data
in
self
.
_prepare_batch_data
(
examples
,
batch_size
,
phase
=
phase
):
yield
batch_data
return
wrapper
class
ClassifyReader
(
BaseReader
):
def
_read_tsv
(
self
,
input_file
,
quotechar
=
None
):
"""Reads a tab separated value file."""
with
open
(
input_file
,
"r"
)
as
f
:
reader
=
csv
.
reader
(
f
,
delimiter
=
"
\t
"
,
quotechar
=
quotechar
)
headers
=
next
(
reader
)
text_indices
=
[
index
for
index
,
h
in
enumerate
(
headers
)
if
h
!=
"label"
]
Example
=
namedtuple
(
'Example'
,
headers
)
examples
=
[]
for
line
in
reader
:
for
index
,
text
in
enumerate
(
line
):
if
index
in
text_indices
:
line
[
index
]
=
text
.
replace
(
' '
,
''
)
example
=
Example
(
*
line
)
examples
.
append
(
example
)
return
examples
def
_pad_batch_records
(
self
,
batch_records
):
batch_token_ids
=
[
record
.
token_ids
for
record
in
batch_records
]
batch_text_type_ids
=
[
record
.
text_type_ids
for
record
in
batch_records
]
batch_position_ids
=
[
record
.
position_ids
for
record
in
batch_records
]
batch_labels
=
[
record
.
label_id
for
record
in
batch_records
]
batch_labels
=
np
.
array
(
batch_labels
).
astype
(
"int64"
).
reshape
([
-
1
,
1
])
if
batch_records
[
0
].
qid
:
batch_qids
=
[
record
.
qid
for
record
in
batch_records
]
batch_qids
=
np
.
array
(
batch_qids
).
astype
(
"int64"
).
reshape
([
-
1
,
1
])
else
:
batch_qids
=
np
.
array
([]).
astype
(
"int64"
).
reshape
([
-
1
,
1
])
# padding
padded_token_ids
,
next_sent_index
,
self_attn_bias
=
pad_batch_data
(
batch_token_ids
,
pad_idx
=
self
.
pad_id
,
return_next_sent_pos
=
True
,
return_attn_bias
=
True
)
padded_text_type_ids
=
pad_batch_data
(
batch_text_type_ids
,
pad_idx
=
self
.
pad_id
)
padded_position_ids
=
pad_batch_data
(
batch_position_ids
,
pad_idx
=
self
.
pad_id
)
return_list
=
[
padded_token_ids
,
padded_text_type_ids
,
padded_position_ids
,
self_attn_bias
,
batch_labels
,
next_sent_index
,
batch_qids
]
return
return_list
class
SequenceLabelReader
(
BaseReader
):
def
_pad_batch_records
(
self
,
batch_records
):
batch_token_ids
=
[
record
.
token_ids
for
record
in
batch_records
]
batch_text_type_ids
=
[
record
.
text_type_ids
for
record
in
batch_records
]
batch_position_ids
=
[
record
.
position_ids
for
record
in
batch_records
]
batch_label_ids
=
[
record
.
label_ids
for
record
in
batch_records
]
batch_seq_lens
=
[
len
(
record
.
token_ids
)
for
record
in
batch_records
]
# padding
padded_token_ids
,
self_attn_bias
=
pad_batch_data
(
batch_token_ids
,
pad_idx
=
self
.
pad_id
,
return_next_sent_pos
=
False
,
return_attn_bias
=
True
)
padded_text_type_ids
=
pad_batch_data
(
batch_text_type_ids
,
pad_idx
=
self
.
pad_id
)
padded_position_ids
=
pad_batch_data
(
batch_position_ids
,
pad_idx
=
self
.
pad_id
)
padded_label_ids
=
pad_batch_data
(
batch_label_ids
,
pad_idx
=
len
(
self
.
label_map
)
-
1
)
batch_seq_lens
=
np
.
array
(
batch_seq_lens
).
astype
(
"int64"
).
reshape
(
[
-
1
,
1
])
return_list
=
[
padded_token_ids
,
padded_text_type_ids
,
padded_position_ids
,
self_attn_bias
,
padded_label_ids
,
batch_seq_lens
]
return
return_list
def
_reseg_token_label
(
self
,
tokens
,
labels
,
tokenizer
):
assert
len
(
tokens
)
==
len
(
labels
)
ret_tokens
=
[]
ret_labels
=
[]
for
token
,
label
in
zip
(
tokens
,
labels
):
sub_token
=
tokenizer
.
tokenize
(
token
)
if
len
(
sub_token
)
==
0
:
continue
ret_tokens
.
extend
(
sub_token
)
ret_labels
.
append
(
label
)
if
len
(
sub_token
)
<
2
:
continue
sub_label
=
label
if
label
.
startswith
(
"B-"
):
sub_label
=
"I-"
+
label
[
2
:]
ret_labels
.
extend
([
sub_label
]
*
(
len
(
sub_token
)
-
1
))
assert
len
(
ret_tokens
)
==
len
(
ret_labels
)
return
ret_tokens
,
ret_labels
def
_convert_example_to_record
(
self
,
example
,
max_seq_length
,
tokenizer
):
tokens
=
tokenization
.
convert_to_unicode
(
example
.
text_a
).
split
(
u
""
)
labels
=
tokenization
.
convert_to_unicode
(
example
.
label
).
split
(
u
""
)
tokens
,
labels
=
self
.
_reseg_token_label
(
tokens
,
labels
,
tokenizer
)
if
len
(
tokens
)
>
max_seq_length
-
2
:
tokens
=
tokens
[
0
:(
max_seq_length
-
2
)]
labels
=
labels
[
0
:(
max_seq_length
-
2
)]
tokens
=
[
"[CLS]"
]
+
tokens
+
[
"[SEP]"
]
token_ids
=
tokenizer
.
convert_tokens_to_ids
(
tokens
)
position_ids
=
list
(
range
(
len
(
token_ids
)))
text_type_ids
=
[
0
]
*
len
(
token_ids
)
no_entity_id
=
len
(
self
.
label_map
)
-
1
label_ids
=
[
no_entity_id
]
+
[
self
.
label_map
[
label
]
for
label
in
labels
]
+
[
no_entity_id
]
Record
=
namedtuple
(
'Record'
,
[
'token_ids'
,
'text_type_ids'
,
'position_ids'
,
'label_ids'
])
record
=
Record
(
token_ids
=
token_ids
,
text_type_ids
=
text_type_ids
,
position_ids
=
position_ids
,
label_ids
=
label_ids
)
return
record
if
__name__
==
'__main__'
:
pass
paddle_hub/dataset/tokenization.py
0 → 100644
浏览文件 @
0cf54052
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
collections
import
unicodedata
import
six
def
convert_to_unicode
(
text
):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if
six
.
PY3
:
if
isinstance
(
text
,
str
):
return
text
elif
isinstance
(
text
,
bytes
):
return
text
.
decode
(
"utf-8"
,
"ignore"
)
else
:
raise
ValueError
(
"Unsupported string type: %s"
%
(
type
(
text
)))
elif
six
.
PY2
:
if
isinstance
(
text
,
str
):
return
text
.
decode
(
"utf-8"
,
"ignore"
)
elif
isinstance
(
text
,
unicode
):
return
text
else
:
raise
ValueError
(
"Unsupported string type: %s"
%
(
type
(
text
)))
else
:
raise
ValueError
(
"Not running on Python2 or Python 3?"
)
def
printable_text
(
text
):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if
six
.
PY3
:
if
isinstance
(
text
,
str
):
return
text
elif
isinstance
(
text
,
bytes
):
return
text
.
decode
(
"utf-8"
,
"ignore"
)
else
:
raise
ValueError
(
"Unsupported string type: %s"
%
(
type
(
text
)))
elif
six
.
PY2
:
if
isinstance
(
text
,
str
):
return
text
elif
isinstance
(
text
,
unicode
):
return
text
.
encode
(
"utf-8"
)
else
:
raise
ValueError
(
"Unsupported string type: %s"
%
(
type
(
text
)))
else
:
raise
ValueError
(
"Not running on Python2 or Python 3?"
)
def
load_vocab
(
vocab_file
):
"""Loads a vocabulary file into a dictionary."""
vocab
=
collections
.
OrderedDict
()
fin
=
open
(
vocab_file
)
for
num
,
line
in
enumerate
(
fin
):
items
=
convert_to_unicode
(
line
.
strip
()).
split
(
"
\t
"
)
if
len
(
items
)
>
2
:
break
token
=
items
[
0
]
index
=
items
[
1
]
if
len
(
items
)
==
2
else
num
token
=
token
.
strip
()
vocab
[
token
]
=
int
(
index
)
return
vocab
def
convert_by_vocab
(
vocab
,
items
):
"""Converts a sequence of [tokens|ids] using the vocab."""
output
=
[]
for
item
in
items
:
output
.
append
(
vocab
[
item
])
return
output
def
convert_tokens_to_ids
(
vocab
,
tokens
):
return
convert_by_vocab
(
vocab
,
tokens
)
def
convert_ids_to_tokens
(
inv_vocab
,
ids
):
return
convert_by_vocab
(
inv_vocab
,
ids
)
def
whitespace_tokenize
(
text
):
"""Runs basic whitespace cleaning and splitting on a peice of text."""
text
=
text
.
strip
()
if
not
text
:
return
[]
tokens
=
text
.
split
()
return
tokens
class
FullTokenizer
(
object
):
"""Runs end-to-end tokenziation."""
def
__init__
(
self
,
vocab_file
,
do_lower_case
=
True
):
self
.
vocab
=
load_vocab
(
vocab_file
)
self
.
inv_vocab
=
{
v
:
k
for
k
,
v
in
self
.
vocab
.
items
()}
self
.
basic_tokenizer
=
BasicTokenizer
(
do_lower_case
=
do_lower_case
)
self
.
wordpiece_tokenizer
=
WordpieceTokenizer
(
vocab
=
self
.
vocab
)
def
tokenize
(
self
,
text
):
split_tokens
=
[]
for
token
in
self
.
basic_tokenizer
.
tokenize
(
text
):
for
sub_token
in
self
.
wordpiece_tokenizer
.
tokenize
(
token
):
split_tokens
.
append
(
sub_token
)
return
split_tokens
def
convert_tokens_to_ids
(
self
,
tokens
):
return
convert_by_vocab
(
self
.
vocab
,
tokens
)
def
convert_ids_to_tokens
(
self
,
ids
):
return
convert_by_vocab
(
self
.
inv_vocab
,
ids
)
class
CharTokenizer
(
object
):
"""Runs end-to-end tokenziation."""
def
__init__
(
self
,
vocab_file
,
do_lower_case
=
True
):
self
.
vocab
=
load_vocab
(
vocab_file
)
self
.
inv_vocab
=
{
v
:
k
for
k
,
v
in
self
.
vocab
.
items
()}
self
.
wordpiece_tokenizer
=
WordpieceTokenizer
(
vocab
=
self
.
vocab
)
def
tokenize
(
self
,
text
):
split_tokens
=
[]
for
token
in
text
.
lower
().
split
(
" "
):
for
sub_token
in
self
.
wordpiece_tokenizer
.
tokenize
(
token
):
split_tokens
.
append
(
sub_token
)
return
split_tokens
def
convert_tokens_to_ids
(
self
,
tokens
):
return
convert_by_vocab
(
self
.
vocab
,
tokens
)
def
convert_ids_to_tokens
(
self
,
ids
):
return
convert_by_vocab
(
self
.
inv_vocab
,
ids
)
class
BasicTokenizer
(
object
):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def
__init__
(
self
,
do_lower_case
=
True
):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self
.
do_lower_case
=
do_lower_case
def
tokenize
(
self
,
text
):
"""Tokenizes a piece of text."""
text
=
convert_to_unicode
(
text
)
text
=
self
.
_clean_text
(
text
)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text
=
self
.
_tokenize_chinese_chars
(
text
)
orig_tokens
=
whitespace_tokenize
(
text
)
split_tokens
=
[]
for
token
in
orig_tokens
:
if
self
.
do_lower_case
:
token
=
token
.
lower
()
token
=
self
.
_run_strip_accents
(
token
)
split_tokens
.
extend
(
self
.
_run_split_on_punc
(
token
))
output_tokens
=
whitespace_tokenize
(
" "
.
join
(
split_tokens
))
return
output_tokens
def
_run_strip_accents
(
self
,
text
):
"""Strips accents from a piece of text."""
text
=
unicodedata
.
normalize
(
"NFD"
,
text
)
output
=
[]
for
char
in
text
:
cat
=
unicodedata
.
category
(
char
)
if
cat
==
"Mn"
:
continue
output
.
append
(
char
)
return
""
.
join
(
output
)
def
_run_split_on_punc
(
self
,
text
):
"""Splits punctuation on a piece of text."""
chars
=
list
(
text
)
i
=
0
start_new_word
=
True
output
=
[]
while
i
<
len
(
chars
):
char
=
chars
[
i
]
if
_is_punctuation
(
char
):
output
.
append
([
char
])
start_new_word
=
True
else
:
if
start_new_word
:
output
.
append
([])
start_new_word
=
False
output
[
-
1
].
append
(
char
)
i
+=
1
return
[
""
.
join
(
x
)
for
x
in
output
]
def
_tokenize_chinese_chars
(
self
,
text
):
"""Adds whitespace around any CJK character."""
output
=
[]
for
char
in
text
:
cp
=
ord
(
char
)
if
self
.
_is_chinese_char
(
cp
):
output
.
append
(
" "
)
output
.
append
(
char
)
output
.
append
(
" "
)
else
:
output
.
append
(
char
)
return
""
.
join
(
output
)
def
_is_chinese_char
(
self
,
cp
):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if
((
cp
>=
0x4E00
and
cp
<=
0x9FFF
)
or
#
(
cp
>=
0x3400
and
cp
<=
0x4DBF
)
or
#
(
cp
>=
0x20000
and
cp
<=
0x2A6DF
)
or
#
(
cp
>=
0x2A700
and
cp
<=
0x2B73F
)
or
#
(
cp
>=
0x2B740
and
cp
<=
0x2B81F
)
or
#
(
cp
>=
0x2B820
and
cp
<=
0x2CEAF
)
or
(
cp
>=
0xF900
and
cp
<=
0xFAFF
)
or
#
(
cp
>=
0x2F800
and
cp
<=
0x2FA1F
)):
#
return
True
return
False
def
_clean_text
(
self
,
text
):
"""Performs invalid character removal and whitespace cleanup on text."""
output
=
[]
for
char
in
text
:
cp
=
ord
(
char
)
if
cp
==
0
or
cp
==
0xfffd
or
_is_control
(
char
):
continue
if
_is_whitespace
(
char
):
output
.
append
(
" "
)
else
:
output
.
append
(
char
)
return
""
.
join
(
output
)
class
WordpieceTokenizer
(
object
):
"""Runs WordPiece tokenziation."""
def
__init__
(
self
,
vocab
,
unk_token
=
"[UNK]"
,
max_input_chars_per_word
=
100
):
self
.
vocab
=
vocab
self
.
unk_token
=
unk_token
self
.
max_input_chars_per_word
=
max_input_chars_per_word
def
tokenize
(
self
,
text
):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text
=
convert_to_unicode
(
text
)
output_tokens
=
[]
for
token
in
whitespace_tokenize
(
text
):
chars
=
list
(
token
)
if
len
(
chars
)
>
self
.
max_input_chars_per_word
:
output_tokens
.
append
(
self
.
unk_token
)
continue
is_bad
=
False
start
=
0
sub_tokens
=
[]
while
start
<
len
(
chars
):
end
=
len
(
chars
)
cur_substr
=
None
while
start
<
end
:
substr
=
""
.
join
(
chars
[
start
:
end
])
if
start
>
0
:
substr
=
"##"
+
substr
if
substr
in
self
.
vocab
:
cur_substr
=
substr
break
end
-=
1
if
cur_substr
is
None
:
is_bad
=
True
break
sub_tokens
.
append
(
cur_substr
)
start
=
end
if
is_bad
:
output_tokens
.
append
(
self
.
unk_token
)
else
:
output_tokens
.
extend
(
sub_tokens
)
return
output_tokens
def
_is_whitespace
(
char
):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if
char
==
" "
or
char
==
"
\t
"
or
char
==
"
\n
"
or
char
==
"
\r
"
:
return
True
cat
=
unicodedata
.
category
(
char
)
if
cat
==
"Zs"
:
return
True
return
False
def
_is_control
(
char
):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if
char
==
"
\t
"
or
char
==
"
\n
"
or
char
==
"
\r
"
:
return
False
cat
=
unicodedata
.
category
(
char
)
if
cat
.
startswith
(
"C"
):
return
True
return
False
def
_is_punctuation
(
char
):
"""Checks whether `chars` is a punctuation character."""
cp
=
ord
(
char
)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if
((
cp
>=
33
and
cp
<=
47
)
or
(
cp
>=
58
and
cp
<=
64
)
or
(
cp
>=
91
and
cp
<=
96
)
or
(
cp
>=
123
and
cp
<=
126
)):
return
True
cat
=
unicodedata
.
category
(
char
)
if
cat
.
startswith
(
"P"
):
return
True
return
False
paddle_hub/dir.py
浏览文件 @
0cf54052
...
...
@@ -11,9 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
USER_HOME
=
os
.
path
.
expanduser
(
'~'
)
HUB_HOME
=
os
.
path
.
join
(
USER_HOME
,
".hub"
)
MODULE_HOME
=
os
.
path
.
join
(
HUB_HOME
,
"modules"
)
CACHE_HOME
=
os
.
path
.
join
(
HUB_HOME
,
"cache"
)
DATA_HOME
=
os
.
path
.
join
(
HUB_HOME
,
"dataset"
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录