提交 07f287d7 编写于 作者: C Channingss

support show detection result, support get video resolution automatically

上级 3a992a82
...@@ -53,8 +53,8 @@ python infer.py --models_dir=/path/to/models --img_paths=/path/to/images --video ...@@ -53,8 +53,8 @@ python infer.py --models_dir=/path/to/models --img_paths=/path/to/images --video
| models_dir | Yes|上述导出的模型路径 | | models_dir | Yes|上述导出的模型路径 |
| img_paths |img_paths/video_path 二选一|需要预测的图片目录 | | img_paths |img_paths/video_path 二选一|需要预测的图片目录 |
| video_path |img_paths/video_path 二选一|需要预测的视频目录| | video_path |img_paths/video_path 二选一|需要预测的视频目录|
| video_size |No|预测视频分辨率大小(w,h) | | use_camera |No|是否打开摄像头进行预测,默认为False |
| use_camera |No|是否打开摄像头进行预测 | | open_imshow |No|是否进行检测结果实时绘图,默认为False |
| use_gpu |No|是否GPU,默认为False| | use_gpu |No|是否GPU,默认为False|
说明: 说明:
......
...@@ -33,30 +33,27 @@ import argparse ...@@ -33,30 +33,27 @@ import argparse
def parse_args(): def parse_args():
parser = argparse.ArgumentParser('mask detection.') parser = argparse.ArgumentParser('mask detection.')
parser.add_argument('--models_dir', parser.add_argument(
type=str, '--models_dir', type=str, default='', help='path of models.')
default='', parser.add_argument(
help='path of models.') '--img_paths', type=str, default='', help='path of images')
parser.add_argument('--img_paths', parser.add_argument(
type=str, '--video_path', type=str, default='', help='path of video.')
default='', parser.add_argument(
help='path of images') '--use_camera',
parser.add_argument('--video_path', type=bool,
type=str, default=False,
default='', help='switch detect video or camera, default:video.')
help='path of video.') parser.add_argument(
parser.add_argument('--video_size', '--open_imshow',
type=tuple, type=bool,
default=(1920, 1080), default=False,
help='size of video.') help='visualize results in real time.')
parser.add_argument('--use_camera', parser.add_argument(
type=bool, '--use_gpu',
default=False, type=bool,
help='switch detect video or camera, default:video.') default=False,
parser.add_argument('--use_gpu', help='switch cpu/gpu, default:cpu.')
type=bool,
default=False,
help='switch cpu/gpu, default:cpu.')
args = parser.parse_args() args = parser.parse_args()
return args return args
...@@ -108,10 +105,11 @@ class MaskClassifier: ...@@ -108,10 +105,11 @@ class MaskClassifier:
h, w = self.EVAL_SIZE[1], self.EVAL_SIZE[0] h, w = self.EVAL_SIZE[1], self.EVAL_SIZE[0]
inputs = [] inputs = []
for face in faces: for face in faces:
im = cv2.resize(face.rect_data, (128, 128), im = cv2.resize(
fx=0, face.rect_data, (128, 128),
fy=0, fx=0,
interpolation=cv2.INTER_CUBIC) fy=0,
interpolation=cv2.INTER_CUBIC)
# HWC -> CHW # HWC -> CHW
im = im.swapaxes(1, 2) im = im.swapaxes(1, 2)
im = im.swapaxes(0, 1) im = im.swapaxes(0, 1)
...@@ -151,10 +149,8 @@ class FaceDetector: ...@@ -151,10 +149,8 @@ class FaceDetector:
def Preprocess(self, image, shrink): def Preprocess(self, image, shrink):
h, w = int(image.shape[1] * shrink), int(image.shape[0] * shrink) h, w = int(image.shape[1] * shrink), int(image.shape[0] * shrink)
im = cv2.resize(image, (h, w), im = cv2.resize(
fx=0, image, (h, w), fx=0, fy=0, interpolation=cv2.INTER_CUBIC)
fy=0,
interpolation=cv2.INTER_CUBIC)
# HWC -> CHW # HWC -> CHW
im = im.swapaxes(1, 2) im = im.swapaxes(1, 2)
im = im.swapaxes(0, 1) im = im.swapaxes(0, 1)
...@@ -194,16 +190,18 @@ class FaceDetector: ...@@ -194,16 +190,18 @@ class FaceDetector:
def predict_images(args): def predict_images(args):
detector = FaceDetector(model_dir=args.models_dir + '/pyramidbox_lite/', detector = FaceDetector(
mean=[104.0, 177.0, 123.0], model_dir=args.models_dir + '/pyramidbox_lite/',
scale=[0.007843, 0.007843, 0.007843], mean=[104.0, 177.0, 123.0],
use_gpu=args.use_gpu, scale=[0.007843, 0.007843, 0.007843],
threshold=0.7) use_gpu=args.use_gpu,
threshold=0.7)
classifier = MaskClassifier(model_dir=args.models_dir + '/mask_detector/',
mean=[0.5, 0.5, 0.5], classifier = MaskClassifier(
scale=[1.0, 1.0, 1.0], model_dir=args.models_dir + '/mask_detector/',
use_gpu=args.use_gpu) mean=[0.5, 0.5, 0.5],
scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
names = [] names = []
image_paths = [] image_paths = []
for name in os.listdir(args.img_paths): for name in os.listdir(args.img_paths):
...@@ -229,26 +227,29 @@ def predict_video(args, im_shape=(1920, 1080), use_camera=False): ...@@ -229,26 +227,29 @@ def predict_video(args, im_shape=(1920, 1080), use_camera=False):
capture = cv2.VideoCapture(0) capture = cv2.VideoCapture(0)
else: else:
capture = cv2.VideoCapture(args.video_path) capture = cv2.VideoCapture(args.video_path)
detector = FaceDetector(
detector = FaceDetector(model_dir=args.models_dir + '/pyramidbox_lite/', model_dir=args.models_dir + '/pyramidbox_lite/',
mean=[104.0, 177.0, 123.0], mean=[104.0, 177.0, 123.0],
scale=[0.007843, 0.007843, 0.007843], scale=[0.007843, 0.007843, 0.007843],
use_gpu=args.use_gpu, use_gpu=args.use_gpu,
threshold=0.7) threshold=0.7)
classifier = MaskClassifier(model_dir=args.models_dir + '/mask_detector/', classifier = MaskClassifier(
mean=[0.5, 0.5, 0.5], model_dir=args.models_dir + '/mask_detector/',
scale=[1.0, 1.0, 1.0], mean=[0.5, 0.5, 0.5],
use_gpu=args.use_gpu) scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
path = './result' path = './result'
isExists = os.path.exists(path) isExists = os.path.exists(path)
if not isExists: if not isExists:
os.makedirs(path) os.makedirs(path)
fps = 30 fps = 30
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v') fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(os.path.join(path, 'result.mp4'), fourcc, fps, writer = cv2.VideoWriter(
args.video_size) os.path.join(path, 'result.mp4'), fourcc, fps, (width, height))
import time import time
start_time = time.time() start_time = time.time()
index = 0 index = 0
...@@ -263,8 +264,12 @@ def predict_video(args, im_shape=(1920, 1080), use_camera=False): ...@@ -263,8 +264,12 @@ def predict_video(args, im_shape=(1920, 1080), use_camera=False):
end_pre = time.time() end_pre = time.time()
im = VisualizeResult(frame, det_out) im = VisualizeResult(frame, det_out)
writer.write(im) writer.write(im)
if args.open_imshow:
cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
end_time = time.time() end_time = time.time()
print("include read time:", (end_time - start_time) / index) print("Average prediction time per frame:", (end_time - start_time) / index)
writer.release() writer.release()
...@@ -273,5 +278,5 @@ if __name__ == "__main__": ...@@ -273,5 +278,5 @@ if __name__ == "__main__":
print(args.models_dir) print(args.models_dir)
if args.img_paths != '': if args.img_paths != '':
predict_images(args) predict_images(args)
elif args.video_path != '': elif args.video_path != '' or args.use_camera:
predict_video(args) predict_video(args)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册