**NOTE:** Auto Fine-tune功能会根据popsize和cuda自动实现排队使用GPU,如popsize=5,cuda=['0','1','2','3'],则每搜索一轮,Auto Fine-tune自动起四个进程训练,所以第5组超参组合需要排队一次。为了提高GPU利用率以及超参优化效率,此时建议可以设置为3张可用的卡,cuda=['0','1','2']。
`NOTE`
* Auto Fine-tune功能会根据popsize和cuda自动实现排队使用GPU,为了提高GPU利用率,建议卡数为刚好可以被popsize整除。如popsize=6,cuda=['0','1','2','3'],则每搜索一轮,Auto Fine-tune自动起四个进程训练,所以第5/6组超参组合需要排队一次,在搜索第5/6两组超参时,会存在两张卡出现空闲等待的情况,如果设置为3张可用的卡,且可以避免出现这种情况。
## 四、目录结构
## 四、可视化
进行自动超参搜索时,PaddleHub会生成以下目录
```
./output_dir/
├── log_file.txt
├── visualization
├── round0
├── round1
├── ...
└── roundn
├── log-0.info
├── log-1.info
├── ...
├── log-m.info
├── model-0
├── model-1
├── ...
└── model-m
```
其中output_dir为启动autofinetune命令时指定的根目录,目录下:
* log_file.txt记录了每一轮搜索所有的超参以及整个过程中所搜索到的最优超参
* visualization记录了可视化过程的日志文件
* round0 ~ roundn记录了每一轮的数据,在每个round目录下,还存在以下文件:
* log-0.info ~ log-m.info记录了每个搜索方向的日志
* model-0 ~ model-m记录了对应搜索的参数
## 五、可视化
Auto Finetune API在优化超参过程中会自动对关键训练指标进行打点,启动程序后执行下面命令