未验证 提交 02674b5d 编写于 作者: jm_12138's avatar jm_12138 提交者: GitHub

update ultra_light_fast_generic_face_detector_1mb_320 (#1965)

* update ultra_light_fast_generic_face_detector_1mb

* add clean func

* update save inference model
上级 ce4efe17
...@@ -102,19 +102,13 @@ ...@@ -102,19 +102,13 @@
- ```python - ```python
def save_inference_model(dirname, def save_inference_model(dirname)
model_filename=None,
params_filename=None,
combined=True)
``` ```
- 将模型保存到指定路径。 - 将模型保存到指定路径。
- **参数** - **参数**
- dirname: 存在模型的目录名称; <br/> - dirname: 模型保存路径 <br/>
- model\_filename: 模型文件名称,默认为\_\_model\_\_; <br/>
- params\_filename: 参数文件名称,默认为\_\_params\_\_(仅当`combined`为True时生效);<br/>
- combined: 是否将参数保存到统一的一个文件中。
## 四、服务部署 ## 四、服务部署
...@@ -168,6 +162,10 @@ ...@@ -168,6 +162,10 @@
移除 fluid api 移除 fluid api
* 1.2.0
修复无法导出推理模型的问题
- ```shell - ```shell
$ hub install ultra_light_fast_generic_face_detector_1mb_320==1.1.3 $ hub install ultra_light_fast_generic_face_detector_1mb_320==1.2.0
``` ```
...@@ -101,19 +101,13 @@ ...@@ -101,19 +101,13 @@
- ```python - ```python
def save_inference_model(dirname, def save_inference_model(dirname)
model_filename=None,
params_filename=None,
combined=True)
``` ```
- Save model to specific path - Save model to specific path
- **Parameters** - **Parameters**
- dirname: output dir for saving model - dirname: model save path
- model\_filename: filename for saving model
- params\_filename: filename for saving parameters
- combined: whether save parameters into one file
## IV.Server Deployment ## IV.Server Deployment
...@@ -167,6 +161,10 @@ ...@@ -167,6 +161,10 @@
Remove fluid api Remove fluid api
* 1.2.0
Fix a bug of save_inference_model
- ```shell - ```shell
$ hub install ultra_light_fast_generic_face_detector_1mb_320==1.1.3 $ hub install ultra_light_fast_generic_face_detector_1mb_320==1.2.0
``` ```
...@@ -10,11 +10,10 @@ import numpy as np ...@@ -10,11 +10,10 @@ import numpy as np
import paddle import paddle
from paddle.inference import Config from paddle.inference import Config
from paddle.inference import create_predictor from paddle.inference import create_predictor
from ultra_light_fast_generic_face_detector_1mb_320.data_feed import reader from .data_feed import reader
from ultra_light_fast_generic_face_detector_1mb_320.processor import base64_to_cv2 from .processor import base64_to_cv2
from ultra_light_fast_generic_face_detector_1mb_320.processor import postprocess from .processor import postprocess
import paddlehub as hub
from paddlehub.module.module import moduleinfo from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable from paddlehub.module.module import runnable
from paddlehub.module.module import serving from paddlehub.module.module import serving
...@@ -27,19 +26,20 @@ from paddlehub.module.module import serving ...@@ -27,19 +26,20 @@ from paddlehub.module.module import serving
author_email="paddle-dev@baidu.com", author_email="paddle-dev@baidu.com",
summary= summary=
"Ultra-Light-Fast-Generic-Face-Detector-1MB is a high-performance object detection model release on https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB.", "Ultra-Light-Fast-Generic-Face-Detector-1MB is a high-performance object detection model release on https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB.",
version="1.1.3") version="1.2.0")
class FaceDetector320(hub.Module): class FaceDetector320:
def __init__(self):
def _initialize(self):
self.default_pretrained_model_path = os.path.join(self.directory, self.default_pretrained_model_path = os.path.join(self.directory,
"ultra_light_fast_generic_face_detector_1mb_320") "ultra_light_fast_generic_face_detector_1mb_320", "model")
self._set_config() self._set_config()
def _set_config(self): def _set_config(self):
""" """
predictor config setting predictor config setting
""" """
cpu_config = Config(self.default_pretrained_model_path) model = self.default_pretrained_model_path+'.pdmodel'
params = self.default_pretrained_model_path+'.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info() cpu_config.disable_glog_info()
cpu_config.disable_gpu() cpu_config.disable_gpu()
self.cpu_predictor = create_predictor(cpu_config) self.cpu_predictor = create_predictor(cpu_config)
...@@ -51,29 +51,11 @@ class FaceDetector320(hub.Module): ...@@ -51,29 +51,11 @@ class FaceDetector320(hub.Module):
except: except:
use_gpu = False use_gpu = False
if use_gpu: if use_gpu:
gpu_config = Config(self.default_pretrained_model_path) gpu_config = Config(model, params)
gpu_config.disable_glog_info() gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0) gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
self.gpu_predictor = create_predictor(gpu_config) self.gpu_predictor = create_predictor(gpu_config)
def save_inference_model(self, dirname, model_filename=None, params_filename=None, combined=True):
if combined:
model_filename = "__model__" if not model_filename else model_filename
params_filename = "__params__" if not params_filename else params_filename
place = paddle.CPUPlace()
exe = paddle.Executor(place)
program, feeded_var_names, target_vars = paddle.static.load_inference_model(
dirname=self.default_pretrained_model_path, executor=exe)
paddle.static.save_inference_model(dirname=dirname,
main_program=program,
executor=exe,
feeded_var_names=feeded_var_names,
target_vars=target_vars,
model_filename=model_filename,
params_filename=params_filename)
def face_detection(self, def face_detection(self,
images=None, images=None,
paths=None, paths=None,
......
import os
import shutil
import unittest
import cv2
import requests
import paddlehub as hub
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
class TestHubModule(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
img_url = 'https://ai-studio-static-online.cdn.bcebos.com/7799a8ccc5f6471b9d56fb6eff94f82a08b70ca2c7594d3f99877e366c0a2619'
if not os.path.exists('tests'):
os.makedirs('tests')
response = requests.get(img_url)
assert response.status_code == 200, 'Network Error.'
with open('tests/test.jpg', 'wb') as f:
f.write(response.content)
cls.module = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_320")
@classmethod
def tearDownClass(cls) -> None:
shutil.rmtree('tests')
shutil.rmtree('inference')
shutil.rmtree('face_detector_320_predict_output')
def test_face_detection1(self):
results = self.module.face_detection(
paths=['tests/test.jpg'],
use_gpu=False,
visualization=False
)
bbox = results[0]['data'][0]
confidence = bbox['confidence']
left = bbox['left']
right = bbox['right']
top = bbox['top']
bottom = bbox['bottom']
self.assertTrue(confidence > 0.5)
self.assertTrue(1000 < left < 4000)
self.assertTrue(1000 < right < 4000)
self.assertTrue(0 < top < 2000)
self.assertTrue(0 < bottom < 2000)
def test_face_detection2(self):
results = self.module.face_detection(
images=[cv2.imread('tests/test.jpg')],
use_gpu=False,
visualization=False
)
bbox = results[0]['data'][0]
confidence = bbox['confidence']
left = bbox['left']
right = bbox['right']
top = bbox['top']
bottom = bbox['bottom']
self.assertTrue(confidence > 0.5)
self.assertTrue(1000 < left < 4000)
self.assertTrue(1000 < right < 4000)
self.assertTrue(0 < top < 2000)
self.assertTrue(0 < bottom < 2000)
def test_face_detection3(self):
results = self.module.face_detection(
images=[cv2.imread('tests/test.jpg')],
use_gpu=False,
visualization=True
)
bbox = results[0]['data'][0]
confidence = bbox['confidence']
left = bbox['left']
right = bbox['right']
top = bbox['top']
bottom = bbox['bottom']
self.assertTrue(confidence > 0.5)
self.assertTrue(1000 < left < 4000)
self.assertTrue(1000 < right < 4000)
self.assertTrue(0 < top < 2000)
self.assertTrue(0 < bottom < 2000)
def test_face_detection4(self):
results = self.module.face_detection(
images=[cv2.imread('tests/test.jpg')],
use_gpu=True,
visualization=False
)
bbox = results[0]['data'][0]
confidence = bbox['confidence']
left = bbox['left']
right = bbox['right']
top = bbox['top']
bottom = bbox['bottom']
self.assertTrue(confidence > 0.5)
self.assertTrue(1000 < left < 4000)
self.assertTrue(1000 < right < 4000)
self.assertTrue(0 < top < 2000)
self.assertTrue(0 < bottom < 2000)
def test_face_detection5(self):
self.assertRaises(
AssertionError,
self.module.face_detection,
paths=['no.jpg']
)
def test_face_detection6(self):
self.assertRaises(
AttributeError,
self.module.face_detection,
images=['test.jpg']
)
def test_save_inference_model(self):
self.module.save_inference_model('./inference/model')
self.assertTrue(os.path.exists('./inference/model.pdmodel'))
self.assertTrue(os.path.exists('./inference/model.pdiparams'))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册