module_v1.py 10.5 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# coding:utf-8
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
import os
from typing import Tuple, List

import paddle
W
wuzewu 已提交
21
from easydict import EasyDict
W
wuzewu 已提交
22 23 24 25 26 27 28 29

from paddlehub.compat import paddle_utils
from paddlehub.compat.module import module_v1_utils
from paddlehub.utils import utils, log


class ModuleV1(object):
    '''
W
wuzewu 已提交
30 31 32
    ModuleV1 is an old version of the PaddleHub Module format, which is no longer in use. In order to maintain
    compatibility, users can still load the corresponding Module for prediction. User should call `hub.Module`
    to initialize the corresponding object, rather than `ModuleV1`.
W
wuzewu 已提交
33
    '''
W
wuzewu 已提交
34

W
wuzewu 已提交
35
    # All ModuleV1 in PaddleHub is static graph model
36
    @paddle_utils.run_in_static_mode
W
wuzewu 已提交
37 38 39 40 41 42
    def __init__(self, name: str = None, directory: str = None, version: str = None):
        if not directory:
            return

        desc_file = os.path.join(directory, 'module_desc.pb')
        self.desc = module_v1_utils.convert_module_desc(desc_file)
W
wuzewu 已提交
43 44
        self.helper = self
        self.signatures = self.desc.signatures
W
wuzewu 已提交
45
        self.default_signature = self.desc.default_signature
W
wuzewu 已提交
46 47

        self.directory = directory
W
wuzewu 已提交
48 49 50 51 52
        self._load_model()
        self._load_parameters()
        self._load_processor()
        self._load_assets()
        self._load_extra_info()
W
wuzewu 已提交
53
        self._generate_func()
W
wuzewu 已提交
54 55

    def _load_processor(self):
W
wuzewu 已提交
56 57 58 59
        # Some module does not have a processor(e.g. ernie)
        if not 'processor_info' in self.desc:
            return

W
wuzewu 已提交
60 61 62
        python_path = os.path.join(self.directory, 'python')
        processor_name = self.desc.processor_info
        self.processor = utils.load_py_module(python_path, processor_name)
W
wuzewu 已提交
63
        self.processor = self.processor.Processor(module=self)
W
wuzewu 已提交
64 65 66

    def _load_assets(self):
        self.assets = []
W
wuzewu 已提交
67 68
        for file in os.listdir(self.assets_path()):
            filepath = os.path.join(self.assets_path(), file)
W
wuzewu 已提交
69 70 71 72
            self.assets.append(filepath)

    def _load_parameters(self):
        global_block = self.program.global_block()
W
wuzewu 已提交
73 74 75 76

        # record num parameters loaded by PaddleHub
        num_param_loaded = 0

W
wuzewu 已提交
77 78 79 80 81
        for param, attrs in self.desc.param_attrs.items():
            name = self.desc.name_prefix + param
            if not name in global_block.vars:
                continue

W
wuzewu 已提交
82
            num_param_loaded += 1
W
wuzewu 已提交
83
            var = global_block.vars[name]
W
wuzewu 已提交
84

W
wuzewu 已提交
85 86
            # Since the pre-trained model saved by the old version of Paddle cannot restore the corresponding
            # parameters, we need to restore them manually.
W
wuzewu 已提交
87 88 89 90 91 92 93 94 95 96 97 98
            global_block.create_parameter(
                name=name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
                error_clip=var.error_clip,
                stop_gradient=var.stop_gradient,
                is_data=var.is_data,
                **attrs)

        log.logger.info('{} pretrained paramaters loaded by PaddleHub'.format(num_param_loaded))
W
wuzewu 已提交
99 100 101 102 103

    def _load_extra_info(self):
        for key, value in self.desc.extra_info.items():
            self.__dict__['get_{}'.format(key)] = value

W
wuzewu 已提交
104
    def _generate_func(self):
W
wuzewu 已提交
105
        for signature in self.desc.signatures:
W
wuzewu 已提交
106
            self.__dict__[signature] = functools.partial(self.__call__, sign_name=signature)
W
wuzewu 已提交
107 108 109 110

    def _load_model(self):
        model_path = os.path.join(self.directory, 'model')
        exe = paddle.static.Executor(paddle.CPUPlace())
111
        self.program, _, _ = paddle.static.load_inference_model(model_path, executor=exe)
W
wuzewu 已提交
112 113 114 115 116 117 118 119

        # Clear the callstack since it may leak the privacy of the creator.
        for block in self.program.blocks:
            for op in block.ops:
                if not 'op_callstack' in op.all_attrs():
                    continue
                op._set_attr('op_callstack', [''])

120
    @paddle_utils.run_in_static_mode
W
wuzewu 已提交
121 122
    def context(self, signature: str = None, for_test: bool = False, trainable: bool = True,
                max_seq_len: int = 128) -> Tuple[dict, dict, paddle.static.Program]:
W
wuzewu 已提交
123
        '''Get module context information, including graph structure and graph input and output variables.'''
W
wuzewu 已提交
124 125 126 127 128 129
        program = self.program.clone(for_test=for_test)
        paddle_utils.remove_feed_fetch_op(program)

        # generate feed vars and fetch vars from signatures
        feed_dict = {}
        fetch_dict = {}
W
wuzewu 已提交
130 131 132 133
        varinfos = [self.desc.signatures[signature]] if signature else self.desc.signatures.values()

        for info in varinfos:
            for feed_var in info.inputs:
W
wuzewu 已提交
134 135 136
                paddle_var = program.global_block().vars[feed_var.name]
                feed_dict[feed_var.alias] = paddle_var

W
wuzewu 已提交
137
            for fetch_var in info.outputs:
W
wuzewu 已提交
138 139 140 141 142 143
                paddle_var = program.global_block().vars[fetch_var.name]
                fetch_dict[fetch_var.alias] = paddle_var

        for param in program.all_parameters():
            param.trainable = trainable

W
wuzewu 已提交
144 145 146 147 148
        # The bert series model saved by ModuleV1 sets max_seq_len to 512 by default. We need to adjust max_seq_len
        # according to the parameters in actual use.
        if 'bert' in self.name or self.name.startswith('ernie'):
            self._update_bert_max_seq_len(program, feed_dict, max_seq_len)

W
wuzewu 已提交
149 150
        return feed_dict, fetch_dict, program

W
wuzewu 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def _update_bert_max_seq_len(self, program: paddle.static.Program, feed_dict: dict, max_seq_len: int = 128):
        MAX_SEQ_LENGTH = 512
        if max_seq_len > MAX_SEQ_LENGTH or max_seq_len <= 0:
            raise ValueError("max_seq_len({}) should be in the range of [1, {}]".format(max_seq_len, MAX_SEQ_LENGTH))
        log.logger.info("Set maximum sequence length of input tensor to {}".format(max_seq_len))
        if self.name.startswith("ernie_v2"):
            feed_list = ["input_ids", "position_ids", "segment_ids", "input_mask", "task_ids"]
        else:
            feed_list = ["input_ids", "position_ids", "segment_ids", "input_mask"]
        for tensor_name in feed_list:
            seq_tensor_shape = [-1, max_seq_len, 1]
            log.logger.info("The shape of input tensor[{}] set to {}".format(tensor_name, seq_tensor_shape))
            program.global_block().var(feed_dict[tensor_name].name).desc.set_shape(seq_tensor_shape)

165
    @paddle_utils.run_in_static_mode
W
wuzewu 已提交
166
    def __call__(self, sign_name: str, data: dict, use_gpu: bool = False, batch_size: int = 1, **kwargs):
W
wuzewu 已提交
167
        '''Call the specified signature function for prediction.'''
W
wuzewu 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

        def _get_reader_and_feeder(data_format, data, place):
            def _reader(process_data):
                for item in zip(*process_data):
                    yield item

            process_data = []
            feed_name_list = []
            for key in data_format:
                process_data.append([value['processed'] for value in data[key]])
                feed_name_list.append(data_format[key]['feed_key'])
            feeder = paddle.fluid.DataFeeder(feed_list=feed_name_list, place=place)
            return functools.partial(_reader, process_data=process_data), feeder

        _, fetch_dict, program = self.context(signature=sign_name, for_test=True)
        fetch_list = list([value for key, value in fetch_dict.items()])
        with paddle.static.program_guard(program):
            result = []
            index = 0
            place = paddle.CUDAPlace(0) if use_gpu else paddle.CPUPlace()

            exe = paddle.static.Executor(place=place)
            data = self.processor.preprocess(sign_name=sign_name, data_dict=data)
            data_format = self.processor.data_format(sign_name=sign_name)
            reader, feeder = _get_reader_and_feeder(data_format, data, place)
            reader = paddle.batch(reader, batch_size=batch_size)
            for batch in reader():
                data_out = exe.run(feed=feeder.feed(batch), fetch_list=fetch_list, return_numpy=False)
                sub_data = {key: value[index:index + len(batch)] for key, value in data.items()}
                result += self.processor.postprocess(sign_name, data_out, sub_data, **kwargs)
                index += len(batch)

        return result
W
wuzewu 已提交
201 202 203

    @classmethod
    def get_py_requirements(cls) -> List[str]:
W
wuzewu 已提交
204
        '''Get Module's python package dependency list.'''
W
wuzewu 已提交
205 206 207
        return []

    @classmethod
W
wuzewu 已提交
208
    def load(cls, directory: str) -> EasyDict:
W
wuzewu 已提交
209
        '''Load the Module object defined in the specified directory.'''
W
wuzewu 已提交
210
        module_info = cls.load_module_info(directory)
W
wuzewu 已提交
211 212 213 214 215 216

        # Generate a uuid based on the class information, and dynamically create a new type.
        # If we do not do this, the information generated later will overwrite the information
        # previously generated.
        cls_uuid = utils.md5(module_info.name + module_info.author + module_info.author_email + module_info.type +
                             module_info.summary + module_info.version + directory)
217
        cls = type('ModuleV1_{}'.format(cls_uuid), (cls, ), {})
W
wuzewu 已提交
218

W
wuzewu 已提交
219 220 221 222 223 224
        cls.name = module_info.name
        cls.author = module_info.author
        cls.author_email = module_info.author_email
        cls.type = module_info.type
        cls.summary = module_info.summary
        cls.version = utils.Version(module_info.version)
W
wuzewu 已提交
225
        cls.directory = directory
W
wuzewu 已提交
226
        return cls
W
wuzewu 已提交
227

W
wuzewu 已提交
228 229
    @classmethod
    def load_module_info(cls, directory: str) -> EasyDict:
W
wuzewu 已提交
230
        '''Load the infomation of Module object defined in the specified directory.'''
W
wuzewu 已提交
231 232
        desc_file = os.path.join(directory, 'module_desc.pb')
        desc = module_v1_utils.convert_module_desc(desc_file)
W
wuzewu 已提交
233 234 235 236 237 238

        # The naming of some old versions of Module is not standardized, which format of uppercase
        # letters. This will cause the path of these modules to be incorrect after installation.
        module_info = desc.module_info
        module_info.name = module_info.name.lower()
        return module_info
W
wuzewu 已提交
239

W
wuzewu 已提交
240 241
    def assets_path(self):
        return os.path.join(self.directory, 'assets')
W
wuzewu 已提交
242 243 244

    @property
    def is_runnable(self):
W
wuzewu 已提交
245 246 247 248
        '''
        Whether the Module is runnable, in other words, whether can we execute the Module through the
        `hub run` command.
        '''
W
wuzewu 已提交
249
        return self.default_signature != None